
Fluid Simulation in Bases of Laplacian Eigenfunctions

by

Tyler de Witt

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2010 by Tyler de Witt



Abstract

Fluid Simulation in Bases of Laplacian Eigenfunctions
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2010

We present a novel method for the simulation of incompressible fluids. In contrast to

existing grid based and particle methods, we choose a spatial representation of vorticity in a

basis of Laplacian eigenfunctions. In this thesis, we show that unique properties of this basis

make it useful for computer graphics applications. Particularly, the Navier-Stokes equations

reduce to a compact form that is elegant and practical, permitting time integration schemes

that operate directly in the reduced space of basis coefficients. These time integration

schemes are efficient and energy preserving. For a number of useful geometries, our basis

functions are analytic. We extend our method to work on simplicial meshes through the use

of discrete exterior calculus.
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Chapter 1

Introduction

I attest to being one of many to have taken pleasure in observing the delicate patterns of
cream stirred into black coffee, watching wisps of smoke curl from a cigar in a still room,
staring mesmerized at a camp fire or sitting by the ocean for hours watching waves break
against the shore. Whatever the reason, fluid motion is naturally captivating. It is no wonder
it has been the source of inspiration and study in a diverse range of fields. For centuries, it
has piqued the imaginations and curiosity of artists, mathematicians and scientists.

Leonardo da Vinci was fascinated with water. His Codex Leicester and Codex Arundel
manuscripts, dating from the early 16th century, were a collection of scientific writings with a
substantial portion devoted to water, its movement, and machines for controlling it. He made
observations about everything from erosion to pipe hydraulics. These were all augmented by
masterful illustrations such as those in Figure 1.1 showing the formation of eddies as water
flows past obstacles.

Figure 1.1: Illustrations of turbulent wakes from da Vinci’s Codex Leicester and Codex
Arundel.

Mathematicians have taken a special interest in the motion of fluids. While scientists and
engineers are concerned foremost with prediction of physical experiments, mathematicians
have an affinity for exploring the strange fundamental properties of idealized fluid models,
such as the Navier-Stokes equations that describe the motion of an ideal incompressible
medium. Such abstractions are extremely interesting in their own right, evidenced by the
amount of deep technical work their study has garnered. Existence and uniqueness of the
three dimensional Navier-Stokes equations are still among the most important open problems
in mathematics. This is all the more fascinating when one considers that these models still

1



Chapter 1. Introduction 2

remain rooted in the observation of nature.
In the context of art, fluid motion is present both as a subject and as a physical medium.

Techniques such as water color painting or paper marbling rely on fluids to impart a strong
character to the resulting piece. An iconic example is Van Gogh’s ‘Starry Night’. Even as a
static painting, the swirling colors of the sky impart a compelling sense of motion.

Figure 1.2: Left: Van Gogh’s ‘Starry Night’ Right: Paper marbling

More recently, animation of fluid motion has become possible, beginning with the hand
drawn animations of the 1950s. Joseph Gilland wrote a book detailing the craft, telling
stories about the typical workflow of these artists spending many days observing nature,
attempting to distill the emergent perceptual features to be incorporated into their work
[14]. Michel Gagne self-describes the effects animator as a “scientific magician ... creating
lighting, and conjuring fiery whirlpools, all from the tip of a pencil” [14]. Perhaps most
striking is the the sheer number of pencil-miles spent animating scenes like an avalanche or
a storm, a testament to how compelling fluid motion can inspire such life long dedication.

With the advent of computing, systems for animating fluids have been developed to
alleviate some of the tedious effort required. For the most part, these animation systems
use variants taken from the mathematical sciences to automate a physical process compu-
tationally. Compared to hand drawn workflow, note the strong difference in approach. The
traditional animator works top down: the process begins with an artistic intention based on
a learned perception of fluid motion, and proceeds to finer and finer tangible detail through
illustration. In contrast, computer simulation based on a physical model requires the op-
posite: one begins with a detailed low level model and hopes that turning the crank will
produce the desired emergent behavior.

Here we begin to see a problem. It is very difficult in a bottom up approach for an
animator to incorporate global artistic intent. Indeed, expressive control of physically based
simulation is recognized as a significant open problem in computer graphics research. It is
the prime motivation for the present work, but is too broad to be addressed here in full
generality. Instead we narrow our focus as follows.

Assuming that a computer animator’s foremost goal is to produce captivating animations,
we address designing fluid simulation methods with this goal in mind. In this thesis we
present a novel method for fluid simulation that is both physically based and has unique
qualitative properties that distinct from existing techniques. Briefly, our method comprises
a representation of fluid’s velocity field in a reduced basis of continuous functions, and a time
integration scheme derived from physical laws that works directly with the basis coefficients.
This paradigm represents a new direction when compared to existing computer graphics fluid
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simulators that rely on a grid or particles for tracking physical quantities. In addition to
avoiding many of the inherent problems associated with existing methods, our technique has
many unique and compelling properties that will require further exploration, some of which
we believe may extend to artistic control. In the following chapters, we will describe our
method, compare it to previous work, demonstrate its qualities and discuss future research
directions.

1.1 Outline

This thesis is structured as follows:

• Chapter 2 reviews some some mathematical preliminaries.

• Chapter 3 presents a general overview of our method and describes its unique proper-
ties.

• Chapter 4 compares our work to some relevant previous work in geometric mechanics
and the computer graphics literature.

• Chapter 5 describes our method in technical detail.

• Chapter 6 shows visual results and discusses time and memory performance.

• Chapter 7 discusses improvements and future research directions.



Chapter 2

Preliminary Concepts

We begin with a review of some mathematical and physical concepts. The goal in our pre-
sentation is to provide intuitive explanations sufficient for the understanding of our method.
Our choice of topics selective, favouring intutition over thoroughness, so readers new to these
concepts may wish to consult the cited references for further detail. Readers familiar with
this material may safely skip this section.

2.1 Function Spaces

A function space is a vector space of functions spanned by a set of n basis functions {φi}. If
a function f is an element of this space, it can be described as a linear combination of basis
functions weighted by scalar coefficients {fi}:

f =
∑
i

fiφi.

Such representations can be very convenient. Even if the basis functions have complicated
expressions, any f is uniquely described by its coefficients {fi} which is just a vector in the
Euclidean space Rn.

Depending on the properties of the basis functions, operations that are difficult to perform
on f may be much simpler to perform on its basis representation {fi}. For example, if the
basis is orthogonal, then

∫
f 2 =

∑
i

f 2
i .

This is the L2 norm, also called the energy of the function due to its meaning in certain
physical contexts. The integral on the left hand side may be difficult to evaluate. However,
if we know the representation of f in its basis coefficients {fi}, the right hand sum is a
simple calculation. Christensen [8] is a good reference for more detail about function spaces,
functional analysis and Fourier analysis.

4



Chapter 2. Preliminary Concepts 5

2.2 Laplacian Eigenfunctions

When applied to a quantity over a domain, the Laplacian operator measures at every point
the difference between the quantity and the average of its surroundings. Its exact form differs
depending on the context and nature of the quantity acted upon, but the intuition remains
intact. For our purposes, we will be most interested in the Laplacian of vector fields in three
dimensional space. The vector Laplacian acts on a vector field and returns a vector field. It
is defined in traditional vector calculus notation as:

∆u = ∇(∇ · u)−∇× (∇× u)

= grad (divu)− curl 2u

for a vector field u.
For ideal fluid dynamics, the velocity vector field is divergence free. In this case the the

first term of the vector Laplacian vanishes. To within a sign, this makes the Laplacian for
divergence free fields equivalent to curl 2:

∆u = curl 2u

div (u) = 0.

An eigenfunction of an operator is one that changes only linearly in magnitude when
acted upon. An eigenfunction of the Laplace operator satisfies

∆φk = λkφk,

for basis functions φk and scalar values λk. Over a domain D, Laplacian eigenfunctions are
the set of functions satisfying the spatial Helmholtz equation

∆φk − λkφ = 0. (2.1)

Depending on D and the context in which they are used, Laplacian eigenfunctions have
various forms and names. For example, over the unbounded real line, they are the set of
sinusoids forming the Fourier basis. Over a sphere, Laplacian eigenfunctions are the spherical
harmonics. In physics, they often appear as the resonant acoustic or electromagnetic modes
in a cavity, or the vibrational modes of a string.

Laplacian eigenfunctions on a domain are mutually orthogonal, and form a basis for L2

functions over this domain. Taking the Fourier basis as an example, any L2 function can
be represented as the sum of sinusoids. However, in general it may take an infinite set of
basis functions to do so exactly. Instead, we may choose to approximate the signal using a
finite number of them. The approximation error can be made very small by using a sufficient
number of basis functions, or choosing a set of basis functions that in the first place most
resemble typical signals. For example, the Fourier basis is well suited for approximating
smooth, periodic functions because the basis functions themselves are smooth and periodic.

To represent vorticity, we will soon make use of Laplacian eigenfunctions of a 2-D rect-
angular domain. These functions have the form
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φk = sin(k1x) sin(k2y), (2.2)

where k1, k2 are positive integers. One can verify that ∆φk = λkφk where λk = k21 + k22.
These functions are plotted on a [0, π]× [0, π] domain in Figure 2.1 for 1 ≤ k1, k2 ≤ 3.

Figure 2.1: Left: Scalar Laplacian eigenfunctions of a 2-D square domain, described Eq. 2.2
for 1 ≤ k1, k2 ≤ 3. Black and white correspond to negative and positive values respectively.
These functions are also known as the 2-D Fourier Sine Basis. Right: Close up of φ2,3.

2.3 Vector Fields and their Vorticity

The motion of an incompressible medium can be characterized by a divergence free velocity
vector field over a domain D. This velocity field u assigns a vector to every point x in
D, subject to a zero divergence constraint and a boundary condition on ∂D. In three
dimensions, taking x,y and z as spatial coordinates and ax, ay, az as unit basis vectors, this
can be described as

u(x, y, z) = ux(x, y, z)ax + uy(x, y, z)ay + uz(x, y, z)az, (2.3)

div (u) = 0,

u · n = 0 over ∂D,

where n is a unit vector normal to the boundary. The condition u · n = 0 is called the free
slip condition, allowing only a tangential velocity component on ∂D.

The Helmholtz Hodge decomposition theorem guarantees that every vector field can be
decomposed into the sum of a divergence free field (also called a solenoidal field) and a curl
free field (also called irrotational). When u is solenoidal, it is uniquely identified by its curl.
In fluid dynamics, this quantity is known as the vorticity, defined as

ω = curlu.

Physically, in three dimensions vorticity measures the tendency of a fluid to rotate about
an axis perpendicular to the velocity field. When restricted to a 2-D domain, for example
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the xy plane, this axis must lie along a new perpendicular spatial direction z. In this case,
ω = curl (u(x, y)) can only have an az component. As a result, this single component can be
interpreted as a scalar function with positive and negative values corresponding to clockwise
and counter-clockwise vorticity, respectively. In three dimensions, both ω and u are vector
quantities and may point in any direction, but always remain perpendicular to each other.

Figure 2.2: The vorticity (blue) of a 2-D vector field (red)

2.4 Dynamical Systems

Dynamical systems describe the time evolution of processes and systems. They encompass
two main things: a description of a system’s state, and how it changes with time.

Examples of a state include the position of a particle, the rotation angle of a swinging
pendulum, or the density field of a gas. The set of all possible states of a system is called the
configuration space. For physical systems, the state will change continuously and hence the
configuration space takes the form of a continuous manifold. Particular states correspond to
points on this manifold.

As time progresses, the state changes and traces out a 1-dimensional curve through the
configuration space. At any point, we may assign a tangent vector describing the direction of
this change. The set of all tangent vectors is called the tangent space. A dynamical system
assigns an element of the tangent space to every point in configuration space.

Our preceding discussion has been geometric in nature. A dynamical system has a direct
analogue as a differential equation

dx

dt
= f(x, t),

where x is a point on the configuration space, and f is a function assigning a tangent
vector dx

dt
to every point. Along with a specification of the configuration space, this equation

completely describes the time evolution of the system. To predict the state x of the system
at a future time, we must integrate (solve) this equation. Depending on the form of f this
may be difficult or impossible to do analytically. In these cases, one must resort to numerical
integration. More detail about dynamical systems and their numerical integration can be
found in [15] and [19].
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2.5 Galerkin Projection

Beginning with a continuous differential equation, the Galerkin projection produces a discrete
differential equation by approximating variables as series expansions in a desired basis. For
example, to solve the nonlinear differential equation

du

dt
+ u2 = 0

we could substitute a representation of u in some basis {φk}

u =
∞∑
i

uiφi

to obtain

d

dt

∞∑
i

uiφi +

(
∞∑
j

ujφj

)2

= 0.

If the series expansions are truncated, the equations become finite dimensional. Solution
of the resulting approximation amounts to determining the basis coefficients such that the
equation is satisfied. Expanding and equating basis function coefficients will often result in
a system of equations that is easier to solve than the original differential equation.

Additionally, the solution method is often facilitated by exploiting properties of the basis
functions themselves. For example, the basis functions may be orthogonal, making some
products zero when integrated globally. The basis functions may have compact support,
making their product zero nearly everywhere.

Galerkin methods are a general category with subcategories identified by the particular
choice of basis. Finite Element Methods (FEM) are the Galerkin method applied with a
basis of piecewise polynomials. These basis functions possess compact support. Due to
this property, FEM typically results in a sparse matrix with is solved numerically. Spectral
methods are also Galerkin methods, but use a Fourier series basis, enabling the Fast Fourier
Transform (FFT) algorithm to be used as a highly efficient method of solution.

2.6 The Euler and Navier-Stokes Fluid Equations

Fluid motion is a dynamical system. It has a configuration space and dynamics described by
differential equations. For an incompressible medium, the configuration space is the set of
all divergence free vector fields. The time evolution is described by the Euler fluid equation

∂u

∂t
+∇uu = −∇p (2.4)

where u is the velocity field, and p is the pressure, a physical force that ‘pushes back’ and
prevents the medium from being compressed or expanded, ensuring that u remains divergence
free. The advection term ∇uu is the directional derivative of the velocity field with respect



Chapter 2. Preliminary Concepts 9

to itself. This equation states that the velocity field will be self-advected in the direction of
a negative pressure gradient.

The Euler fluid equations describe an idealized medium that is inviscid, meaning it does
not dissipate energy. In reality, all physical media must dissipate at least some energy
when they move, due to the shearing motion that occurs in vortices causing molecules to
rub against each other. This energy dissipation is a type of friction called viscosity and is
modelled by adding a dissipative term to the Euler fluid equations, resulting in the Navier-
Stokes equations:

∂u

∂t
+∇uu = −∇p+ ν∆u. (2.5)

The kinematic viscosity parameter ν describes the fluids resistance to shearing, which tends
to dampen the motion of small vortices. Examples of fluids with high and low viscosity are
molasses and alcohol, respectively.

The Euler and Navier-Stokes equations can be restated stated in terms of the fluid’s
vorticity rather than its velocity. Taking the curl of both sides of Eq. 2.4 and Eq 2.5 and
substituting ω = curlu results in

∂ω

∂t
+∇uω = ν∆ω. (2.6)

∂ω

∂t
+∇uω = 0. (2.7)

In doing so, the pressure term conveniently vanishes as the curl of a gradient is zero. Equation
2.7 is also known as the Helmholtz form of the Euler fluid equations.

2.7 Solution Methods to Fluid Equations

The Euler and Navier-Stokes equations describe the dynamics of a continuous velocity field
as it changes continuously over time. However, to solve these equations numerically, both
time and space must be discretized. Here we categorize several existing solution methods
based on their approach to discretizing space.

Eulerian Methods Eulerian methods store and compute fluid quantities (such as velocity,
pressure and density) at fixed grid locations. The grid may be regular (forming a cubic
lattice, for example) or an unstructured polygon mesh. The defining characteristic is that
the sampling points remain fixed, and measurements change continuously as quantities flow
past these points of reference. The mesh points are also used to define discretizations of the
required Laplacian, gradient and advection operators present in the equations. Coupled with
a suitable time integration scheme, solving the Navier-Stokes equations typically requires the
solution to a linear or nonlinear system of equations at each time integration step.

Eulerian methods suffer from two apparent drawbacks. First, the representation of small
scale detail depends on the resolution of the mesh, but as the mesh is refined the size of
the system of equations grows rapidly along with computational cost. Second, the use of
a mesh necessitates interpolation when evaluating quantities at locations away from grid
points. This has a number of drawbacks.
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First, interpolation schemes can cause artifical diffusion. This can be understood by
thinking of interpolation as a low pass filter. Repeatedly applying interpolation at each time
step tends to smooth out small scale detail. Interpolation schemes may also lead to unstable
energy growth in the in the velocity field, causing the simulation to ‘blow up’.

Eulerian methods can be applied to either the vorticity or velocity formulations of the fluid
equations. Representing velocity is the most direct approach, as it is typically this quantity
one is most interested in for visualizing a flow or advecting immersed particles. However,
a notable drawback is that due to inaccuracies in interpolation and time integration, the
velocity field will not remain divergence free. In this case, a correction step is required
to remove the portion of the velocity field with non-zero divergence. This compuation is
expensive and introduces other problems, such as artificial energy loss. Energy dissipation
manifests itself visually as a fluid that is overly viscous, containing less lively turbulent detail.

In contrast, representing the fluid using its vorticity field has the advantage of elimi-
nating the pressure field and guaranteeing that the corresponding velocity field will remain
divergence free. However, one must then reconstruct the velocity field from vorticity. This
involves inversion of the curl operator ω = curl −1u using a formula like the Biot Savart
formula

u(x) =
1

4π

∫
D

ω(z)× x− z
|x− z|3

dz

which in general is difficult and expensive to evaluate.

Lagrangian Methods A second class of methods do not use a fixed mesh. Instead,
physical quantities are attached to a number of discrete particles, which act as moving
sample points. This is an example of a Lagrangian formulation: the frame of reference
moves, while the measured physical quantities do not – they are simply carried along with
the particles. Remaining properties that depend on interactions between particles (such as
pressure) are interpolated anywhere in space by treating the existing particle locations and
attributes as sampled data points. Lagrangian methods are often used to represent vorticity,
either as particles or filaments. Solution of Eq. 2.7 is accomplished by advecting the discrete
vortex elements through the velocity field at each timestep.

Lagrangian methods do not suffer from the inherent diffusion in Eulerian methods caused
by continually resampling at grid locations. However, they have their own host of problems.
To represent the entire fluid, there must be many particles and they must remain well
distributed, necessitating techniques for splitting, merging and destroying particles. Addi-
tionally, accounting for viscosity is difficult. Viscosity implies a type of diffusion, which does
not fit well with a scheme that stores and moves quantities at discrete points. Quantities
cannot be diffused as they can only remain concentrated at discrete points.

When Lagrangian methods are used to represent a velocity field, the same difficulty
arises as in an Eulerian scheme: maintaining the divergence free constraint. In this case
, it is due to the complexity of interpolation with large numbers of particles. To make
computation tractable, particle interactions are generally limited to within a specific distance,
introducing global inaccuracies and nonlinearities that accrete to produce a field that has
non-zero divergence.
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When applied to vorticity, Lagrangian methods overcome the non-zero divergence issue,
but still requires the expensive inversion ω = curl −1 to reconstruct the velocity field. Addi-
tionally, the discrete vorticity elements employed in three dimensions are often 1-dimensional
filaments (as opposed to 0-dimensional particles), necessitating their own geometric dis-
cretization. Finally, boundary conditions are also difficult to enforce with vortex elements.



Chapter 3

Overview of our Method

In this chapter we present an overview of our method, focusing on the discretization of
field quantities. In contrast to Eulerian and Lagrangian formalisms, our representation uses
neither a grid nor particles, but instead relies on a finite basis of continuous analytic functions
– the set of Laplacian eigenfunctions. We will show that this representation greatly facilitates
the solution of fluid equations and overcomes many of the problems inherent in particle and
grid based methods.

3.1 Vorticity and Velocity Fields as Laplacian Eigen-

functions

Let {φk} be a set of vorticity fields that are Laplacian eigenfunctions of a domain, as defined
in Eq. 2.1. Let {Φk} represent the set of associated velocity fields, each satisfying curl Φk =
φk by definition. Any vorticity field ω in L2 can be represented in the {φk} basis as

ω =
∑
i

ωiφi. (3.1)

Similarly, the associated velocity field u satisfying ω = curlu can also be represented in the
basis Φk by taking the curl of Eq. 3.1. Note that corresponding velocity and vorticity fields
have the same coefficients ωi in both the Φk and φk representation, due to linearity of the
curl operator:

u = curlω = curl

(∑
i

ωiφi

)
=
∑
i

ωi curlφi

=
∑
i

ωiΦi. (3.2)

Figure 3.1 shows a set {φk} and {Φk} for a 2-D rectangular domain. We can use a
superposition of the velocity fields to represent any field in the span of {Φk}. Figure 3.2
shows examples of a superpositions. As more basis fields are used, finer scales of vorticity
are achievable.

12
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Figure 3.1: Left: Scalar vorticity basis functions {φk} described by Eq. 2.2. Black and
white correspond to positive (clockwise) and negative (counter-clockwise) vorticity. Right:
Corresponding velocity basis fields {Φk}.

Figure 3.2: Examples of random superpositions of velocity basis fields. Every superposition of
basis functions is a divergence free velocity field that respects a free slip boundary condition.
Finer scale vorticity is achievable with a larger basis. From left to right: 16, 32, 64 basis
functions.

The analytic expressions for φk were given in Eq 2.2. However, we also require expressions
for the velocity basis fields Φk that satisfy curl Φk = φk. To do so, we must evaluate the
inverse curl operation Φk = curl −1φk to be able to go back and forth. Herein lies the key to
our method. Rather than resorting to the Biot Savart formula, because we work in a basis
of Laplacian eigenfunctions curl −1 becomes a simple operation:
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Φk = curl −1φk

= curl −1
(

1

λk
∆φk

)
= curl −1

(
1

λk
curl 2φk

)
=

1

λk
curl −1

(
curl 2φk

)
=

1

λk
curlφk. (3.3)

Using this result, we can easily derive expressions for {Φk} depicted in Figure 3.1

Φk =
1

λk
curl (φk)

Φk =
1

k21 + k22
(k2 sin(k1x) cos(k2y)ax

−k1 cos(k1x) sin(k2y)ay) . (3.4)

The Φk are themselves Laplacian eigenfunctions since

curl Φi = φi

curl 2Φi = curlφi

curl 2Φi = λiΦi

∆Φi = λiΦi. (3.5)

3.2 Advantages and Useful Properties of Laplacian Eigen-

functions

As noted previously, the coefficients of the vorticity basis representation and velocity basis
representation are the same. Any fluid configuration is uniquely described by a set of basis
coefficients. This eliminates the need to store the complete vector field, and instead we
can work directly in the space of coefficient vectors w = [ω1 ω2 . . . ωN ] which is just the
Euclidean vector space RN . Effectively, by choosing an appropriate basis we have reduced
the configuration space to one that is more convenient. Any representable vector field in this
space remains divergence free and satisfies the boundary conditions, as these properties are
built into the {Φk} basis functions themselves.

We will exploit this property in Chapter 5 to show that Galerkin projection of the Navier-
Stokes equations onto a Laplacian eigenfunction basis produces a form that is elegant and
practical. The resulting time integration schemes work directly with the basis coefficients
and a set of sparse precomputed matrices. Computationally, many of the time integrators
are explicit, avoiding the need to solve a system of equations as is required for implicit
methods. This makes them very simple to implement, and trivially parallelizable. As well,
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Figure 3.3: The configuration space of basis field coefficients is a Euclidean space. Each
point represents a superposition of divergence free fields. A smooth curve describes a con-
tinuously changing velocity field: the motion of a fluid. In the figure, we limit the number
of coordinate axes to three as an iconic representation. In reality, the configuration space is
a high dimensional Euclidean space RN .

our algorithm scales with the number of basis functions, rather than with the underlying
grid resolution.

Laplacian eigenfunctions form an orthogonal basis. Hence, the energy in each velocity
basis field is independent of the rest, since

∫
D

ΦiΦj = 0 when i 6= j. The energy content of a
particular basis field Φk is the square of its coefficient ω2

k, and the total physical energy E in a
field is proportional to the sum of squares of its basis coefficients E =

∑
i ω

2
i . In a Euclidean

configuration space, this is just the distance from the origin of the basis coefficients when seen
as a position vector. Orthogonality of the basis allows a simple means to compute and adjust
energy. In Chapter 5 we exploit this property for developing energy preserving integration
schemes exhibiting zero numerical viscosity. In other words, our method naturally preserves
the interesting, turbulent motion of an inviscid fluid.

Figure 3.4: Because the basis is orthogonal, the energy in the fluid velocity field is the square
of the distance from the origin in the configuration space of coefficients. Spheres represent
surfaces of constant energy. The motion of an inviscid fluid will be constrained to one such
surface.

Additionally, our basis has a property that works well in combination with orthogonality.
As depicted in Fig. 3.1, each velocity basis field corresponds intuitively to vortices of varying
scale: larger eigenvalues correspond to basis functions with finer scale turbulence. This allows
energy in different scales of turbulence to be finely controlled with only trivial additional
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computations. In Chapter 5 we show how the viscous term of the Navier-Stokes equations
can be easily (but rigorously) incorporated through use of these properties.

For some simple but useful domains such as a rectangle or cube, our formulation is entirely
analytic. This allows precise evaluation of the field at arbitrary locations without the need
for a mesh or interpolation. This eliminates storage requirements and visual artifacts from
the use of a grid. Analyticity also permits us to derive exact expressions for higher order
derivatives of the velocity fields, allowing high order advection schemes, and symmetric time
reversible integrators.



Chapter 4

Previous Work

We have presented a brief overview and the main contributions of our method. With this
overview in mind, we now survey previous work before going into further technical detail.
As with many research works in computer graphics, our work is adapted from and inspired
by existing concepts in mathematics. Alain Fournier expressed this more succinctly: “In
the time honored tradition of computer graphics, we can now go ahead and steal anything
we can get [13].” In fairness, we review some previous mathematical works in addition to
surveying the computer graphics literature, followed by a comparison to the present work.

4.1 Geometric Mechanics

The geometric viewpoint of fluid dynamics was first touched upon by Poincaré. In his
famous 1901 paper[25], he showed that the dynamics of many physical systems shared the
same description that Euler had first developed for the rotation of a rigid body. Essentially,
Poincaré recognized that the same elegant equations could apply equally well to a variety of
dynamical systems whose permitted movements could be described by continuous manifolds
with group structure. For a rigid body, this manifold is the rotation group SO(3) whereas for
an incompressible fluid it is the more exotic SDiff, the infinite dimensional group of volume
preserving diffeomorphisms.

Such notions seem quite abstract, but this viewpoint provided remarkable intuition into
real physical properties. For example, in his 1969 paper, Arnold considered the curvature of
the group manifold SDiff, providing fundamental results about the stability of fluid motion
[3, 4]. He showed that because the curvature of the manifold is negative, the error in the
prediction of a fluids trajectory grows exponentially with time. Arnold used this result to
claim that weather prediction is impossible for periods longer than two weeks, essentially
because the exponential error growth quickly trumps even the most exaggerated computing
power and measurement apparatus.

In the recent mathematical control theory literature, Agrachev and Sarychev employed
representations of vorticity in a basis of Laplacian eigenfunctions to prove controllability
theorems for incompressible fluids [1]. It was this particular work that first inspired our
efforts, although a similar procedure dates back at least to the works of Yudovich [36]. For
two dimensional fluids, Yudovich was able to use functional basis representations to prove
existence and uniqueness theorems that extend to the infinite dimensional case. Unfortu-
nately, the function spaces considered in two dimensions do not share the same properties
as their three dimensional counterparts, limiting their ability to be generalized.

17
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In the past several decades, Marsden was a prominent researcher in the fields of geometric
mechanics and dynamical systems. In particular, Marsden was a pioneer in the theory and
tools for a discrete counterpart to continuous differential geometry and mechanics [18]. A
discrete exterior calculus (DEC) was developed in cooperation with researchers including
Desbrun and Hirani [9, 16] . DEC operates on simplicial meshes and is designed to preserve,
as much as possible, the same structures and invariants that hold in a continuous setting.
The results find applications for example in electromagnetism, computational fluid dynamics
and computer graphics [22]. DEC is of particular importance to our work, as in Section 5.5
we use it as a recipe to extend our method to irregular simplicial meshes.

4.2 Computer Graphics Literature

4.2.1 Precursors to Physically Based Methods

The first fluid simulation techniques in graphics were not strongly physical. This was not
primarily due to any lack of insight, but was instead necessitated by the goal of producing
at least some type of visual result given the computational restrictions of the time. Some
techniques employed simple parametric models like those of Max [20] which modulated a
sum of sinusoids to represent ocean waves.1 Others include the earliest use of a particle
system, which was designed to emulate fire like phenomena [26].

Models became increasingly physically based. Kass and Miller simulated waves through
an approximation of shallow water equations [17], which is itself a well established approx-
imation to the Navier-Stokes equations. However, this method was fairly limited in that it
was only capable of producing a height field, ruling out the simulation of phenomena such
as breaking waves.

Physically based models of turbulence were used by Stam [32] and Shinya [27] to produce
complex swirling flows. However, these stochastic models were unable to produce determin-
istic motion from initial conditions or to react to outside forces.

4.2.2 Eulerian Grid Based Methods

Grid based fluid techniques in graphics are numerous. We review a few notable ones. In
1996, Foster and Metaxas presented one of the first physically based fluid simulation methods
in graphics, which solved the full Navier-Stokes equations using finite differences on a three
dimensional grid [12]. Their implementation took into account solid obstacles, boundaries
and the liquid/air interface. In comparison to previous techniques, this method was very
general and had a solid physical foundation. Its main limitation was numerical instability.
Due to the use of an explicit time integrator, without carefully monitoring of the step size
the total energy of the system had the potential to grow uncontrollably.

In 1999, Stam presented an unconditionally stable solution method to the Navier-Stokes
equations [30]. Instead of an explicit solver, Stam introduced a semi-implicit method which
guaranteed the energy in the velocity field could never grow. The result was a practical
method for fluid simulation that has become very popular. Although unconditionally stable,
the main drawback of this method is the opposite of [12] – it dissipates too much energy.

1As a functional representation, that is similar in spirit to the present work.
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Technically, the algorithm exhibits artificial numerical viscosity, which manifests visually as
the dampening of small scale turbulent detail.

A number of works dealt with improving the energy behavior of this algorithm. Besides
refining the grid, high order advection can improve accuracy to reduce the amount of dissi-
pation. Fedkiw introduced to graphics the technique of vorticity confinement, a method used
in computational fluid dynamics to reinject energy into vortical regions [11]. This method
improves energy behavior, but does not fix the underlying problem as it is limited to ampli-
fying existing vortices; in particular it cannot produce new vorticity that would otherwise
have formed in a truly inviscid medium. Mullen et al. took a notably different approach
to the energy dissipation problem. Rather than treating the symptom, they presented a
novel Eulerian simulation method inspired by recent work in discrete exterior calculus and
structure preserving fluid integrators [22]. The resulting method exhibits zero energy dis-
sipation. However, it still exhibits numerical diffusion, a phenomenon that is unavoidable
when working in an Eulerian framework due to the iterative interpolation and resampling.

4.2.3 Particle Methods

As discussed previously, Lagrangian particle methods do not suffer from the inherent diffusion
in Eulerian methods caused by continually resampling at grid locations. They are well suited
for simulating water like phenomena, as the mass particles do not diffuse, maintaining a sharp
boundary in droplets and spray. Additionally, all the particles are concentrated in the water
filled region. In contrast, a grid based method may waste many grid cells on large air filled
regions that to not contribute any detail to the simulation.

Particle systems have a long history in the graphics literature. Early works use particle
systems as ad hoc groups of independent vehicles imbued with a designed behavior, such as
the work by Reeves [26].

More recent work adopts a more physical outlook. A notable work is that of Desbrun and
Gascuel [10] who extended Smoothed Particle Hydrodynamics (SPH), a technique used by
cosmologists for simulating the interaction of cosmic matter. The contribution in this work
was to provide a sound physical formulation of particle based sampling and interaction forces,
and the design of appropriate interpolation (smoothing) kernel functions for simulation of
highly deformable substances. A number of follow up works by other researchers aimed at
improving the computation performance and incompressibility [23, 29].

4.2.4 Vortex Methods

Vortex methods are Lagrangian methods employing vortex particles or filaments as discrete
elements. The key advantage to such methods is the elimination of the divergence free
constraint, since it is satisfied implicitly. Vortex methods are very well suited for simulating
fluid phenomena in situations where the domain is entirely filled, such as wispy smoke in an
air filled room. However, they are much less suited to phenomena like water, as it is not
easy to incorporate a moving air-water boundary into the formulation.

Park and Kim were among the first to simulate fluids using vorticity tracked by particles
[24]. In two dimensions this is appropriate as vorticity is scalar valued. In three dimensions
however, vorticity is a vector. In reality vorticity in three dimensions is more accurately rep-
resented by filaments, a fact introduced and developed in the graphics literature by Angelidis
et al. [2]. Recent work has expanded on filament representation, improving its computa-
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tional efficiency and enabling the production of vortex sheets from interaction with obstacles
[35].

4.2.5 Model Reduction

The computational complexity of many physically based simulation techniques do not scale
well. For example, a three dimensional grid based fluid simulation method may require
O(N3) time as an N ×N ×N grid is refined. However, the increase in grid resolution may
not lead to the same gains in perceived simulation quality. Model reduction is an attractive
prospect which seeks to shrink the complexity of the configuration space, while attempting
to maintain the same quality level. Model reduction has been applied to many areas in
graphics including contact detection in deformable bodies [5], acoustic transfer and sound
synthesis [6], and precomputed radiance transfer [28].

To a lesser extent, model reduction has also been applied to fluids. Stam presented
an interactive fluid simulation method exploiting a Fourier basis representation [31]. This
method is very efficient, but the use of a Fourier basis imposes the restriction of periodic
‘wrap around’ boundary conditions, and implies a rectangular domain.

Treuille et al. have simulated fluids in a low dimensional basis of divergence free fields,
achieving real time simulation rates [33]. This method performs a time series analysis of an
existing grid based fluid simulation to obtain an orthogonal basis of velocity fields and ‘learn’
the dynamics. The drawback of this technique is that the precomputation is very expensive.
Additionally, the resulting learned model is linear, and cannot extend to flows that were not
observed during training.

4.3 Comparison to Present Work

Here we comment on the relationship of our work to that previously reviewed. The math-
ematical concepts underlying our present work are not novel. Our main contribution is to
recognize and apply them in a novel practical setting. Similarly, our use of discrete exterior
calculus in Chapter 5.5 is purely as a tool to increase our work’s range of applications.

Our method is related to but distinct from spectral Galerkin methods. We perform
Galerkin projection of the Navier-Stokes equations onto a basis of Laplacian eigenfunctions.
In some sense, this is similar to a spectral method. It differs because for the domains we
consider, the Laplacian eigenfunctions are not always a Fourier series basis so a fast transform
method akin to the Fast Fourier Transform is not always available. Additionally, we seek to
determine the resulting coefficients analytically rather than through a numerical method.

The novelty of our method in computer graphics, however, is considerable. It is differen-
tiated from particle and grid based methods since at its purest, it does not use either of these
constructs. Although we use a simplicial mesh in our DEC formulation of Chapter 5.5, this
is more as an extension to the core concepts rather than an intrinsic part of our work. We
use a vorticity formulation, but it differs greatly from existing vortex methods because we
do not use discrete Lagrangian elements. Additionally, through our choice of basis we avoid
having to perform expensive inversion of u = curl −1ω through the Biot Savart formula.

Our work is closest in spirit to the model reduction of Treuille et al. [33]. At their
core, both use a finite dimensional basis of divergence free fields for representing fluids, and
calculate dynamics directly within this reduced space. Beyond this similarity there are many
differences. Trueille et al.’s method does not generate dynamics on its own, but relies on
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observations of an existing fluid simulation to learn a linear model for the dynamics. In
contrast, we derive dynamics directly from the Navier-Stokes equations. As a result, the
precomputation time is vastly reduced and the resulting dynamics do not depend on any
existing simulation. In addition, the dynamics of our method are nonlinear, producing more
accurate (and perhaps more interesting) behavior.

Finally, our method is the first to make use of continuous analytic expressions for describ-
ing fluid velocity field and its dynamics. All previous fluid simulation methods in graphics
discretize space. For simple (yet practical) domains, we instead use a finite number of ana-
lytic, continuous functions. We also derive exact analytic expressions for the time derivatives
of a system’s path through configuration space. Analyticity provides a number of immediate
advantages such as reducing storage requirements by allowing quantities to be computed on
the fly, rather than existing in memory. It also allows analytic derivation of higher order
space and time derivatives, permitting very accurate advection schemes. We believe analyt-
icity has potential to enabling well founded analysis of meta-techniques (for example, control
policies) that use our fluid simulation as a foundation.



Chapter 5

Fluid Simulation in Bases of
Laplacian Eigenfunctions

Having outlined the benefits of our method in relation to existing work, we will now turn
to the technical detail. In this chapter we discuss the dynamics of fluids represented in
Laplacian eigenfunctions and derive time integration schemes from the Euler and Navier-
Stokes fluid equations. As a preface to this discussion, we begin with an analogy to a rotating
rigid body to build some intuition about the geometric viewpoint of fluids, an interpretation
championed by mathematicians such as Poincaré and Arnold.

5.1 Dynamics: Analogy to Rigid Body Rotation

Euler’s equations for the rotation of a rigid body in the absence of torques or external forces
are

I1
∂ω1

∂t
+ (I3 − I2)ω2ω3 = 0,

I2
∂ω2

∂t
+ (I1 − I3)ω3ω1 = 0,

I3
∂ω3

∂t
+ (I2 − I1)ω1ω2 = 0 (5.1)

where Ik are the principal moments of inertia, and ωk is the angular velocity along each
of three principal axes. These equations describe a dynamical system in which the tangent
vector dωk

dt
(describing the change in angular momentum) is a a quadratic function of the

existing angular velocities {ωi}.
Note that when the body is rotating about a single axis (for example, only ω1 is nonzero),

the time derivatives satisfy ∂ω
∂t

= 0 and the system is in dynamic equilibrium: it will continue
spinning about this single axis indefinitely. As soon as more than one component of the
angular velocity is nonzero, the motion is no longer stationary as angular momentum is then
continually transferred among the three principal axes.

In the absence of friction, this transfer of angular momentum will be perpetual and the
total energy will be conserved. Imagining a three dimensional Euclidean space with ωk along
each of three axes, the path taken in this space must lie on a surface of constant energy. This
is the configuration space of the system. The surface will be an ellipsoid, whose dimensions

22
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are determined by the moments of inertia. The basis is orthogonal, and for appropriate
scaling this surface will be spherical.

Figure 5.1: The configuration space of a rotating rigid body – or an incompressible fluid.
For a rigid body, {ωk} represent angular momentum along the object’s three principal axes.
The configuration space of an incompressible fluid is the infinite dimensional analog, with
{ωk} representing energy in velocity fields which are Laplacian eigenfunctions. In both cases,
surfaces of constant energy for non-dissipative systems are spherical.

Poincaré had the insight that the motion of other dynamical systems could be described
in much the same way [19]. In the case of a fluid, the primary difference is that instead
of three principal axes, there are infinitely many. The axes correspond to the Laplacian
eigenfunction basis fields described in Chapter 3. Many of the properties described for the
rigid body carry over. Fluid motion in a single basis field is a stationary flow. The presence of
multiple basis fields will break the equilibrium and induce quadratic energy transfer to other
components, producing the turbulent, swirly behavior characteristic of an inviscid fluid. The
configuration space is a surface of constant energy embedded in a high dimensional Euclidean
space. With appropriate scaling the basis functions are orthonormal, making the surfaces of
constant energy high dimensional spheres.

5.1.1 Derivation of Analytic Advection Operator

We begin by restating the Helmholtz formulation of the Euler fluid equation

∂ω

∂t
+∇uω = 0.

This equation describes the motion of an inviscid, incompressible fluid in terms of its vorticity.
Intuitively, it states that the vorticity field ω will be advected by the velocity field u. The
nonlinear advection operator ∇u is the directional derivative with respect to the vector field
u. The operation of differentiating a vector field with respect to another vector field is a
special case of a Lie derivative, notated as Luw. This is equivalent to the Jacobi-Lie bracket
of vector fields [u, ω]. In three dimensional space, it can be shown that this reduces to
curl (w× u) in traditional vector calculus notation. All these representations are equivalent:
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∇uω = Luw = [u, ω] = curl (ω × u).

We adopt the bracket notation for simplicity

∂ω

∂t
= [u, ω]. (5.2)

5.1.2 Galerkin Projection

We project ∂ω
∂t

, ω and u onto the Laplacian eigenfunction bases {φk}, {φi} and {Φj}:

∂ω

∂t
=
∑
k

ωkφk

u =
∑
i

ωiΦi

ω =
∑
j

ωjφj.

Substituting these expansions into Eq. 5.2 one obtains

∂

∂t

∑
k

ωkφk =

[∑
i

ωiΦi,
∑
j

ωjφj

]
.

Because the Jacobi-Lie bracket is a linear operator, this reduces to

∑
k

∂ωk
∂t

φk =
∞∑
i

∞∑
j

ωi ωj[Φi, φj]. (5.3)

Following the approach of [1], for now we assume that {φk}, {Φk} are closed under the
bracket [Φi, φj]. In other words, the result of the bracket evaluation can be expressed exactly
in the {φk} basis

[ Φi, φj] =
∑
k

Ck
i,jφk. (5.4)

We will discuss in Section 5.2 how to perform this evaluation. The key point for the current
discussion is that the coefficients Ck

i,j can be precomputed for a given domain. In the math-
ematical literature, they are known as the structure coefficients [19]. Combining with Eq.
5.7, once the Ck

i,j have been precomputed, the kth basis function coefficient of ∂ω
∂t

is

∂ωk
∂t

=
∞∑
i

∞∑
j

ωi ωjC
k
i,j. (5.5)

We begin to see the similarities to the rigid body equations introduced in the preface. Eq.
5.5 describes the change in basis coefficients ω in terms of quadratic functions of the existing
coefficients, weighted by the precomputed factors Ck

i,j. In the rigid body case, the constant
weighted factors were ratios of the moments of inertia. Here they describe the precomputed
interaction of the ith and jth basis fields for a particular domain.
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5.1.3 Incorporating Viscosity

Our derivation began with the Euler fluid equations, ignoring viscosity to keep the exposition
as clear as possible. However, it is not difficult to follow a similar approach for the Navier-
Stokes equations taking into account the viscous term. The Navier-Stokes equations in
vorticity form are

∂ω

∂t
+∇uω = ν∆ω. (5.6)

As the viscous term involves a Laplacian, an expansion in a Laplacian eigenfunction basis is
particularly convenient:

ν∆ω = ν∆
∑
g

ωgφg

= ν
∑
g

λgωgφg.

Galerkin projection of the Navier-Stokes equations yields

∑
k

∂ωk
∂t

φk =
∞∑
i

∞∑
j

ωiωj[Φi, φj]− ν
∑
g

λgωgφg (5.7)

and applying Eq. 5.4 yields the dynamics equations for each coefficient ωk

∂ωk
∂t

=
∞∑
i

∞∑
j

ωiωjC
k
i,j − νλkωk.

Considering only the viscous term and ignoring the structure coefficients, we see that the
effect of viscosity produces a first order linear differential equation in each component ωk

∂ωk
∂t

= −νλkωk.

This means that each basis coefficient will decay exponentially with a time constant propor-
tional to its eigenvalue

ωk(t) = ωk(0)e−νλkt.

This is physically plausible, since larger eigenvalues correspond to smaller vortices which
should decay faster.

5.1.4 Discretization

The previous derivation did not make any approximations, and Eq. 5.5 is still an exact
continuous expression assuming an infinite number of basis functions are employed. However,
to permit computation, a finite dimensional approximation is required. We truncate the basis
expansion to n coefficients yielding
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Figure 5.2: As a viscous fluid dissipates energy, its coefficients will decay with a time constant
proportional to the eigenvalue of the associated Laplacian eigenfunction. In consequence the
path will no longer remain on surfaces of constant energy, but instead spiral towards the
origin.

∂ωk
∂t

=
n∑
i

n∑
j

ωiωjC
k
i,j − νλkωk.

This can be simplified to a matrix equation by treating ω as a column vector w of basis
coefficients, Ck

i,j as a set {Ck} of n-by-n square matrices, and D as a diagonal matrix with
eigenvalues λk along the diagonal

∂wk

∂t
= wTCkw − νDw. (5.8)

The ∂wk

∂t
is hence a quadratic function of the components of the current state vector w.

The coefficients of each quadratic term ωiωj are stored in the i, j position of matrix Ck.

Figure 5.3: We derive an exact expression for the tangent vector in coefficient space as a
function of the current state vector.

In the next section we show how to compute the entries of Ck matrices to satisfy

[Φi, φj] =
n∑
k

Ck[i, j]φk. (5.9)
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5.2 Basis Fields and Lie Bracket Evaluation: Analytic

Solutions

For domains admitting analytic expressions, our method necessitates two main tasks. First,
the Laplacian eigenfunctions themselves must be determined for a particular domain. Sec-
ond, the Lie bracket for pairs of basis functions [Φi, φj] must be evaluated, determining the
entries in the Ck matrices. We will discuss these two problems in general terms and illus-
trate through the example of a 2-D rectangular domain. Derivations for additional analytic
geometries are included in Appendix A.

Determining the basis of Laplacian eigenfunctions amounts to solving the homogeneous
spatial Helmholtz equation

∆ω − λω = 0 (5.10)

on a domain D under given boundary conditions. In our case, this is the velocity boundary
condition u·n = 0 called the free slip condition, allowing only a tangential velocity component
at the boundary. Under these constraints, analytic solutions to Eq. 5.10 are in general
difficult to find. Fortunately, this is a historically well studied problem in other fields such
as physics, as analytic solutions for simple geometries were all that was available prior to
recent advances in computing.

In particular, much can be gleaned from the solutions to spatial Helmholtz problem in
electromagnetics, due to the similarity of boundary conditions. Finding the resonant modes
of waveguides and metallic cavities is a problem parallel to our own and we can leverage the
results to help solve Eq. 5.10. For example, in Appendix A, we use the expressions for the
resonant modes of the electric field in a rectangular cavity.

Having determined the basis in analytic form, [Φi, φj] can be evaluated. This can be done
by directly evaluating curl (φj×Φi). However, it is sometimes more convenient to work only
with either the vorticity basis {φk} or the velocity basis {Φk}. In the following we therefore
present some additional equivalent expressions. To do so, we will make use of an identity
which holds when both a and b are divergence free vector fields

curl (a× b) = b× curl a.

The bracket expansion can be rewritten entirely in terms of {Φk}:

[Φi, φj] = curl (φj × Φi)

= Φi × curl (φj)

= Φi × λjΦj

= λj (Φi × Φj) (5.11)

where we also employed the substitution curlφj = λjΦj from Eq. 3.3. We can instead
substitute Φi = 1

λi
curlφi to obtain an expression in terms of {φk}:

[Φi, φj] =
1

λi
(curlφi × curlφj) . (5.12)

Evaluating the bracket analytically using any of these methods is tedious but straight-
forward. What remains is to factor the result into a linear combination of basis functions
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{φk}. We require closure and sparseness, so that the resulting be stored in the {Ck} ma-
trices of coefficients. Properties of the Jacobi-Lie bracket guarantee closure of {φk} under
this operation. This ensures that the result will in fact be a divergence free field. However,
there is no guarantee that the result is sparse. In the geometries we have examined to date
whose basis functions are sinusoidal in nature, this in fact holds. In these cases, the bracket
of basis functions gives rise to products of sinusoids which are themselves bandlimited. In
fact, for any two functions f and g bandlimited by n and m respectively, their product
will be bandlimited by n + m. However, it is unknown to us if the bracket for Laplacian
eigenfunctions of arbitrary geometries always reduces to products of bandlimited functions.

5.2.1 Properties of Ck Matrices

The structure coefficient matrices Ck have a number of useful properties. Most importantly,
these matrices are sparse. For the analytic geometries we’ve considered, only 1%-4% of the
entries are nonzero. Not every pair of basis fields interacts to produce growth or decay in
every other component.

Due to the cross product being an antisymmetric operator, we can see from Eq. 5.12
that these matrices will possess a type of antisymmetry. The entries are not exactly anti-
symmetric, due to the 1

λi
factor. Instead we have

1

λi
Ck[i, j] = − 1

λj
Ck[j, i].

We can exploit this property to compute only half of the matrix entries and mirror the
rest with this formula. Antisymmetry also implies that the diagonal entries must be zero.
This makes sense intuitively since each basis field represents a stationary flow and does not
interact with itself.

5.2.2 Lie Bracket Evaluation: 2-D Rectangular Domain

In Section 3, we introduced the basis fields for a bounded 2-D rectangle with free slip bound-
ary condition. Here we provide an example of analytic bracket evaluation for pairs of these
basis functions. For a 2-D [0, π]×[0, π] rectangle with vanishing vorticity boundary condition,
the Laplacian eigenfunctions of vorticity take the form

φk = sin(k1x) sin(k2y)az (5.13)

where k = (k1, k2) ∈ Z2 is a tuple which we call a vector wave number. The function φk
satisfies ∆φk = λkφk for the eigenvalue λk = k21 + k22. The corresponding velocity basis fields
{Φk} are

Φk = curl (∆−1φk)

=
1

k21 + k22
(k2 sin(k1x) cos(k2y)ax

−k1 cos(k1x) sin(k2y)ay) .
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Because the expressions for φk are simpler than Φk, we choose to evaluate the bracket using
Eq. 5.12. We begin by expanding curl (φa), recalling that a and b are vector wave numbers
(a1, a2) and (b1, b2)

curlφa = a2 sin(a1x) cos(a2y)ax − a1 cos(a1x) sin(a2y)ay

curlφb = b2 sin(b1x) cos(b2y)ax − b1 cos(b1x) sin(b2y)ay.

Next we evaluate their cross product

(curlφa × curlφb)x = 0

(curlφa × curlφb)y = 0

(curlφa × curlφb)z = a1b2 cos(a1x) cos(b2y) sin(a2x) sin(b1y)

− a2b1 cos(a2x) cos(b1y) sin(a1x) sin(b2y).

Note that in the end only the az component remains nonzero since the cross product
produces a vector perpendicular to both operands. This is hopeful, since we expect the {φk}
to span the result. The trigonometric identity cos(α) sin(β) = 1

2
sin(α + β) − 1

2
sin(α − β)

allows simplification to a suitable form:

(curlφa × curlφb)z =
1

4
(a2b1 sin((a1 − a2)x) sin((b1 − b2)y)

− a1b2 sin((a1 − a2)x) sin((b1 − b2)y)

+ a2b1 sin((a1 + a2)x) sin((b1 − b2)y)

+ a1b2 sin((a1 + a2)x) sin((b1 − b2)y)

− a2b1 sin((a1 − a2)x) sin((b1 + b2)y)

− a1b2 sin((a1 − a2)x) sin((b1 + b2)y)

− a2b1 sin((a1 + a2)x) sin((b1 + b2)y)

+ a1b2 sin((a1 + a2)x) sin((b1 + b2)y))

(curlφa × curlφb)z =
1

4
((a1b2 − a2b1)φa1+a2,b1+b2
+ (a1b2 + a2b1)φa1+a2,b1−b2
− (a1b2 + a2b1)φa1−a2,b1+b2
−(a1b2 − a2b1)φa1−a2,b1−b2)

which is indeed spanned by {φk}. The result is a sum of basis fields of different wave number,
the coefficients of which are added to the {Ck} matrices:

Ca1+a2,b1+b2 [a, b] =
1

4
(a1b2 − a2b1)

Ca1+a2,b1−b2 [a, b] =
1

4
(a1b2 + a2b1)

Ca1−a2,b1+b2 [a, b] = −1

4
(a1b2 + a2b1)

Ca1−a2,b1−b2 [a, b] = −1

4
(a1b2 − a2b1).
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Although the initial derivation is tedious, the result is a very simple procedure for com-
puting the Ck for use in Eq. 5.8: iterate over all pairs of mode numbers a, b, adding the
result to the Ck entries accordingly.

5.3 Time Discretization: Numerical Integration Schemes

In this section we describe a number of methods for time integration of Eq. 5.8. We begin by
outlining a few unique properties of our formulation that enable various integration schemes.

Equation 5.8 provides an exact expression for the tangent vector ∂wk

∂t
representing the

time evolution of vorticity. We can also analytically calculate higher order time derivatives
of wk by differentiating Eq. 5.8. For example, ignoring the viscous term for clarity, the
second and third time derivatives are

∂2wk

∂t2
=
∂w

∂t

T

Ckw + wTCk
∂w

∂t
.

=

(
w +

∂w

∂t

)T
Ck

(
w +

∂w

∂t

)
.

and

∂3wk

∂t3
=

(
w + 2

∂w

∂t
+
∂2w

∂t2

)T
Ck

(
w + 2

∂w

∂t
+
∂2w

∂t2

)
.

Likewise, the higher-order derivatives follow the same pattern, with the coefficients fol-
lowing those of a binomial expansion. The procedure is identical when the viscous term is
included, although the algebra is slightly more cumbersome. The main point is that accurate
time derivatives of arbitrary order are available to us, and can be exploited in a number of
time integration schemes.

A second observation relates to energy conservation. Under the Laplacian eigenfunction
basis, surfaces of constant energy correspond to N dimensional spheres in a Euclidean space.
In the absence of dissipation, the path must be constrained to this surface. Knowing this
allows us to impose a correction to any time integration scheme to ensure ω stays on the

Figure 5.4: The tangent vector ∂wk

∂t
representing the time evolution of vorticity.
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surface. Computationally, this is very simple because projection onto a sphere is just a
scaled renormalizing of the coefficient vector. Hence many of the time integration schemes
presented follow a ‘step and project’ scheme.1

Figure 5.5: We can evaluate the tangent vector exactly, follow this direction for a timestep
and reproject to the manifold of constant energy, an N dimensional spherical surface.

5.3.1 Euler Integration

We first consider the simplest case of an explicit Euler integration scheme (not to be confused
with the Euler fluid equations):

wk[t+ ∆t] = wk[t] + ∆t
∂wk

∂t
[t].

This scheme simply evaluates the velocity at the current position, and follows this direction
for a small timestep. 2

Note that we have an exact expression for the velocity at the current position in configura-
tion space. This vector will always be tangent to the manifold of constant energy. However,
following this tangent vector over a timestep causes the state to leave this manifold. As
discussed, we can correct for this by projecting back to a sphere through normalization

w =
1

|w|
w.

Viscosity is incorporated through exponential decay of the diagonal matrix D of basis
field eigenvalues

1Note that the meaning of our projection step is unrelated to the projection step in the Stam’s stable
fluids algorithm [30]. In Stam’s work, projection was performed in order to enforce the zero divergence
constraint, and required the solution of a linear system. It did not preserve energy. In our case, all possible
velocity fields are guaranteed to be divergence free. The projection step here is instead to preserve energy,
and requires only a trivial calculation.

2Square bracket notation is used to denote a discrete time sequence wk[t] as opposed to a continuous
function wk(t).
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wD = exp(−ν∆tD)w.

Combining these steps, our integration scheme is:

1. Calculate current velocity direction and follow it for a small time interval

∂wk

∂t
= wTCkw

wk = wk[t] + ∆t
∂wk

∂t
[t],

2. Renormalize to preserve energy:

wN =
1

|wa|
w,

3. Account for viscosity by dissipating energy in each coefficient:

w[t+ ∆t] = exp(−ν∆tD)wN .

5.3.2 Higher Order Explicit Methods

The procedure just described can be improved by altering the first step to use higher order
schemes (such as a Runge Kutta method) or using higher order time derivatives to produce
a Taylor expansion

wk[t+ ∆t] = wk[t] + ∆t
(
w[t]TCkw[t]

)
+

1

2!
(∆t)2

(
w[t] +

∂w[t]

∂t

)T
Ck

(
w[t] +

∂w[t]

∂t

)
+

1

3!
(∆t)3

(
w[t] + 2

∂w[t]

∂t
+
∂2w[t]

∂t2

)T
Ck

(
w[t] + 2

∂w[t]

∂t
+
∂2w[t]

∂t2

)
+ · · · .

5.3.3 Time Reversible Verlet Integrator

Using the available expressions for the second time derivative, a Verlet integrator can be
built that is fourth order accurate in ∆t:

wk[t+ ∆t] = 2wk[t]−wk[t−∆t] +
∂2wk

∂t2
(∆t)2 .
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This Verlet integrator is also symmetric, allowing time to be run in reverse direction. Note
that the first time derivative ∂wk

∂t
is not explicitly part of the formula, as it is approximated

by the difference between the position vectors. Over time, the velocity approximation will
become worse due to accumulating error in the integrator. This is in contrast to previous
integrators where it is only the vorticity position (or state) vector that accumulates error
since ∂wk

∂t
is recalculated explicitly at each time step.

Error in velocity is the price that is paid for time reversibility. More accurate time
reversible integrators could be derived by including additional even order time derivatives in
the Verlet integrator.

5.3.4 Exponential Map

As an alternative to the ‘step and project’ scheme in explicit methods, it is also possible
to derive an N dimensional rotation matrix that will constrain the motion to the constant
energy sphere, approximating the true geodesic motion of the Euler fluid equations near the
current state.

The Lie algebra of SO(N), the N dimensional rotation group, can be represented as
N ×N skew symmetric matrices. An element r of this Lie algebra is uniquely identified by
the current state w and tangent vector ∂w

∂t
through the relation

ri,j =

(
w ∧ ∂w

∂t

)
i,j

where the right hand side is the ith, jth component of the wedge product between the state
and tangent vector. r is indeed antisymmetric due to properties of the wedge product.
This element of the the Lie algebra can be mapped back to the group SO(N) through the
exponential map

w[t+ ∆t] = exp (∆t r) w

w[t+ ∆t] = R(∆t)w

where the rotation matrix R can be computed using a truncated matrix exponential series

R(∆t) = exp (∆t r) =
∞∑
k

1

k!
tkrk.

Since R is unitary, the resulting vector will have identical energy. This method is interesting
because it preserves the geometric viewpoint of a fluid as a high dimensional rotation group,
and provides a more rigorous way of enforcing energy preservation compared to the ‘step
and project’ method. However, its practical utility is limited as the computation is more
expensive than an explicit method, and does not greatly improve accuracy for small timesteps
when compared to an Euler method with reprojection. This method could be used in cases
where the accuracy is highly valued regardless of computational expense.
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Figure 5.6: An N dimensional rotation matrix R can be calculated as a function of w and
dw
dt

through the exponential map. Applied to the current state vector, R constrains motion
exactly to a spherical surface of constant energy.

5.4 Dynamics of Advected Quantities

Our method produces a velocity field, which can be used to advect particles or densities in
standard ways. However, for simple domains, we have analytic expressions for the velocity
basis fields and their spatial derivatives. We have shown previously that we can obtain exact
time derivatives for the change in the velocity field. Having both spatial and time derivatives
gives us the tools to derive unique advection schemes.

To illustrate, consider the path taken by a massless particle immersed in a 2-D fluid.
Denote the particle’s position by p(t). The particle’s velocity is p′(t) = u(p(t), t) which we
write in coordinate form in 2-D as:

p′x(t) = ux(px(t), py(t), t)

p′y(t) = uy(px(t), py(t), t).

Note that u is the time varying fluid velocity field, making it a function of t as well as
the particle’s position. The particle’s acceleration is the time derivative of this expression.
Since both the particle’s position p(t) and the velocity field u vary with time, we use the
chain rule to obtain the total derivative. In 2-D coordinates, this yields:

p′′x(t) =
∂ux
∂px

∂px
∂t

+
∂ux
∂py

∂py
∂t

+
∂ux
∂t

p′′y(t) =
∂uy
∂px

∂px
∂t

+
∂uy
∂py

∂py
∂t

+
∂uy
∂t

.

All of these terms are available to us. ∂px
∂t

and ∂px
∂t

are just the velocity vectors at a point.
∂ux
∂px

are the spatial derivatives of the velocity field, which can be obtained by differentiating

analytic basis functions. The time derivative terms ∂ux
∂t

are obtained by first calculating time

derivative in the vorticity basis ∂wk

∂t
as outlined in 5.3 and then expanding in the velocity

basis.
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Using a second order Taylor expansion as an example, we can derive a time integration
scheme for particle advection as

p[t+ ∆t] = p[t] + p′(t)∆t+
1

2
p′′(t)(∆t)2.

Note that through the p′′(t) term, not only does this scheme take into account acceleration
information of the particle, but incorporates the time variation of the velocity field itself.
Previous fluid simulation techniques in graphics always alternate between update of the
velocity field and particles/density, treating the velocity field as static during advection.

The example illustrated is for a second order Taylor expansion, but the same procedure
could be applied to obtain an expansion of arbitrary order. We have shown in Section 5.3
how to obtain arbitrary time derivatives of the velocity field. Assuming the functions are
smooth, we can continue to differentiate analytic basis functions spatially. Mixed partials
can be handled by first calculating the time derivative in the vorticity basis as outlined, and
then expanding in spatial derivatives of the velocity field.

Symmetric Integrators for Particles

A symmetric, time reversible Verlet integrator was described for time integration of the
vorticity. The same may be applied to particles transported by the fluid

p[t+ ∆t] = 2p[t]− p[t−∆t] + p′′(t)(∆t)2.

As previously noted, a Verlet integrator does not explicitly calculate velocity, but rather
approximates it through current and past positions and updates it based on the accelera-
tion. The approximated velocity will drift from the actual velocity as error accumulates.
Visually, this becomes very noticeable as the particle’s velocity will no longer correspond to
the underlying fluid velocity field, resulting in motion that is no longer divergence free.

The integrator remains time reversible precisely because the velocity is encoded in con-
secutive particle positions. Hence, accumulation error in velocity is the price that is paid
for time reversibility. This can be mitigated by using small time steps or using higher order
Verlet integrators, taking into account even order time derivatives of the particle’s position.
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5.5 Discrete Meshes for Irregular Geometries

Until now, our formulation has been entirely analytic. This is possible under simple geome-
tries, in which analytic expressions for Laplacian eigenfunctions are available. However, to
describe flows on arbitrary geometries, we must resort to a discrete numerical approach to
approximate the basis functions and their interactions. As meshes are a common represen-
tation of geometry in computer graphics, we aim to reformulate our algorithm to work with
arbitrary discrete meshes, while retaining the desirable structure and properties from the
analytic case.

Differential operators can be discretized (approximated) in a variety of ways. Finite
differences are a simple means to do so, but offer no guarantee of preserving the inherent
geometric structure of the physical model. Instead, we opt instead to employ discrete exte-
rior calculus (DEC) [9, 16]. Exterior calculus (EC) is the modern language of differential
geometry: a calculus of continuous manifolds. It defines continuous operators such as the ex-
terior derivative and the Hodge star which operate on differential forms defined over smooth
manifolds. DEC is an extension of EC to discrete domains. Instead of manifolds, quantities
are represented on simplicial meshes. Discrete operators are defined that share many of the
important properties of their continuous counterparts. As a result, DEC has been shown
to preserve geometric structure of the continuous models in many problem areas, including
electromagnetism and fluid dynamics [?, 22]. It is a natural choice for transitioning our
model to the discrete case. For a detailed introduction to DEC, see [9]. For DEC applied
to fluid simulation in computer graphics, see the previous work on energy preserving fluids
[22] and circulation preserving simplicial fluids [?].

We will begin by modelling fluid quantities and operators using EC and DEC in similar
fashion to the approaches in previous work [?, 22]. Next, we show how these tools can be
used in the context of our method. Namely, we show how to obtain basis fields that are
eigenfunctions of a discrete Laplacian operator, and how to discretize the advection operator
to compute the entries of the Ck matrices.

Figure 5.7: Examples of basis fields on 3D irregular tetrahedral meshes.

5.5.1 Fluid Quantities as Differential Forms

Continuous differential forms are quantities that can be integrated. Discrete differential forms
are represented by their integral over a discrete domain. Instead of representing velocity as
a vector field, we instead store the integral of velocity flux across the boundary. In 2-D, that
boundary is an edge, so velocity is a 1-form. In 3-D, velocity flux is integrated over faces,
making velocity a 2-form. In this fashion, differential forms are simply values attached to
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edges and faces. No additional information needs to be stored, as the direction of the velocity
is defined intrinsically through the geometry of the mesh itself. As vorticity is orthogonal
to velocity, it lives naturally on the dual mesh, and is similarly represented as an integrated
quantity over faces. Table 5.1 summarizes the differential forms.

Figure 5.8: Velocity and vorticity as differential forms on a 2-D simplicial mesh. Velocity
exists on edges, representing the flux across the edge boundary. Vorticity lives on dual faces,
representing the flux through the face.

Table 5.1: Fluid quantities in DEC

Quantity Symbol 2-D 3-D

Vorticity ω Dual 2-form Dual 2-form
Velocity u Primary 1-form Primary 2-form

5.5.2 DEC Operators and their Implementation

Here we describe exterior calculus operators and how their discrete equivalents can be im-
plemented as matrices or algorithms. Table 5.2 summarizes a relation between traditional
vector calculus operators and their DEC equivalents.

Hodge Star Operator In n dimensional space, the discrete Hodge star operator ∗ maps
a primal k form to a dual (n − k) form. The diagonal Hodge star operator is one possible
implementation of this mapping defined as the ratio between the primal and dual volume
elements.

Exterior Derivative Operator The continuous exterior derivative operator satisfies Stokes
theorem:
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Table 5.2: DEC Operator equivalents

Description Vector Calculus DEC

Curl of a vector field ω = curl (u) ω = d ∗ u
Divergence of a vector field div (u) du

Cross Product u× ω ω = u ∧ ω
Laplacian ω = curl 2ψ = ∆ψ ω = d ∗ d ∗ ψ

∫
c

du =

∫
∂c

u

which says that for a k-form u and a domain c, du evaluated over a simplex is equal to
u evaluated on the boundary of c. The discrete exterior derivative operator is designed to
satisfy a similar discrete version of Stokes theorem. Essentially, the domain c becomes a
simplex, and u a k-form represented by quantities on the boundary simplicial elements of c.
To determine du, we sum the k-form quantities around the boundary of each k + 1 simplex
(being careful to account for orientation) and store the result on k + 1 simplicies.

Divergence When applied to an n − 1 form in an n dimensional space, the divergence
operator is just d, the exterior derivative. For example, in 2-D dimensions it sums the fluxes
through the edges (1-forms) to calculate the divergence of each triangle (2-form). In 3-D, it
sums fluxes of faces to calculate the divergence of each tetrahedron. This makes calculating
the divergence of a velocity field in DEC very simple, as u is represented as integrated velocity
flux on edges or faces, and du amounts to summing the fluxes on the boundary of a volume
cell.

Figure 5.9: The divergence du of a triangle is calculated by summing the fluxes of the
surrounding edges.

Curl The curl operator is a combination of preceding operators, defined as d∗ in DEC. We
illustrate its implementation on a 2-D simplicial mesh. Since ω = curlu, we expect d ∗ u to
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produce a dual 2 form, a value stored on dual faces. As depicted in Figure 5.10a, for each
dual face, we consider the adjacent primal edges e1, . . . , e6 and scale their flux values by the
length of dual edges. This is the action of the ∗ operator. Next, we sum these values and
assign the result to the dual face si.

We also saw that for Laplacian eigenfunctions, we can recover the velocity through u =
1
λ
curlω; thus applying d∗ to ω should yield a 1-form. As depicted in Figure 5.10b, for each

primal edge, we consider the two adjacent dual faces and scale their vorticity values by the
area of each face. This is the action of the Hodge star ∗ operator. Then we take the oriented
sum of these values and assign the result to the primal edge.

The described procedures are straightforward operations. d∗ applied to a primal 1-form
and d∗ applied to a dual 2-form can each be represented by a matrix acting on a column
vector of form values. Hence for a given mesh, these matrix operators can be precomputed.
If all ω and u values over the mesh are represented as column vectors u and w respectively,
then the d∗ operators can be conveniently represented as sparse matrices Mω,u and Mu,ω

ω = d ∗ u
w = Mω,uu

u =
1

λ
d ∗ ω

u = Mu,ωw.

Note that multiplication by Mω,u or Mu,ω represents global action of the operator on the
entire mesh.

Figure 5.10: Calculating ω = d ∗ u and u = 1
λ
d ∗ ω on a 2-D simplicial mesh.

Laplacian The Laplace operator in exterior calculus is defined as

∆ = δd+ dδ = ∗d ∗ d+ d ∗ d ∗ .
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Since the divergence of the velocity and vorticity fields is zero, dω = du = 0 and the first
term in the definition vanishes. Hence for divergence free fields, the Laplacian operator is
just d ∗ d∗, a product of the two d∗ matrix operators introduced above:

ω = λd ∗ d ∗ ω
w = λMω,uMu,ωw.

Note that if φk is a Laplacian eigenfunction then ∆φk = d ∗ d ∗ φk = λkφk, and Φk =
curl −1φk = 1

λk
d ∗ φk as in the continuous case.

Wedge Product The wedge product is required for computing the advection operator
between basis fields. In the most general sense the wedge product maps a k and n form to
a k + n form. The discrete formulation of the wedge product is rather complicated. For
our purposes, we consider only wedge products in three dimensions, which is equivalent to
the traditional vector cross product. The underlying concept is that we evaluate the flux
through a dual face of the cross product ui × uj.

On an irregular mesh, the cross product can be approximated as follows. Consider Figure
5.11. Edges are represented by ei. Unit vectors normal to edge ei are denoted by ni, satisfying
ni · ei = 0 and |ni| = 1. The support area ai,j is the area of the quadrilateral formed by the
centroid of the triangular face and the midpoints of edges ei, ej. The union of all ai,j is the
dual face s. The velocity 1-form assigned to each primal edge is denoted by ua[ei] or ub[ei].

To evaluate the flux of ub × ua through s, consider every pair of adjacent edges ei, ej
emanating from a vertex and evaluate the sum:

∑
ai,j (ua[ei]ub[ej]− ub[ei]ua[ej]) (ni × nj)

Essentially, this is a low order approximation to the cross product weighted by the support
area subtended by each pair of edges. The same procedure applies in three dimensions,
except we consider every adjacent pair of primal faces to a primal edge.

Figure 5.11: Evaluation of advection operator of 2-D simplicial mesh
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5.5.3 Discrete Laplacian Eigenfunctions

As previously explained, we adopt the following discrete Laplace operator for divergence free
fields:

∆ = d ∗ d ∗ .

For a given simplicial mesh, this operator is represented as a sparse symmetric matrix ob-
tained by multiplication of the matrix representations of the d and Hodge star ∗ operators.
Computing the basis fields amounts to finding the eigenvectors of this matrix. Boundary
conditions are enforceable by explicitly setting entries in the operator matrix. For example,
to enforce a free-slip velocity boundary condition, we omit (set to zero) the rows of the first
d operator that calculate vorticity as a function of surrounding edges (or in the 3-D case,
faces.)

Choice of Eigensolver Many techniques exist to compute the eigendecomposition of a
matrix. Our choice of eigensolver is motived by the properties of our matrix and the practical
requirements of our setting. The discretized Laplace operator is real symmetric and sparse.
We require a method that works well with sparse representations, as the storage requirements
for dense representations would be prohibitive for large meshes. Similarly, computing a
complete set of eigenvalues for a large mesh would be very expensive. For interactive fluid
simulations, our method will typically be used with a moderate number of basis functions.
Hence, we require a method that can calculate only a subset of the eigenvalues, ordered from
smallest to largest.

A good candidate for these requirements is the Arnoldi method implemented in ARPACK.
This is an iterative method making it suitable for sparse matrix representations. This method
can also return a small number of eigenvalues near an desired point in the spectrum. To
obtain an ordered set of positive eigenvalues, we begin by searching near zero, and gradually
increase the search point until the desired number of eigenvectors have been computed.

Note that the eigensolver will converge very rapidly if the initial search point is very near
an eigenvalue. Hence, once a set of eigenvectors has been computed, it suffices to store only
the eigenvalues for future program runs, as these can be used as initial search points for the
eigensolver, greatly accelerating eigenvector computation.

A further consideration in the choice of solver is the qualitative difference in the orthogo-
nal basis fields. Just as an orthogonal basis can be oriented arbitrarily in R3 , the orthogonal
velocity basis fields sets will vary from solver to solver. Some have produced sets of beautiful
patterns, much different than the boxed vortex shapes of the Fourier Sine basis calculated
analytically.
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Figure 5.12: Examples of orthogonal basis fields produced by a Jacobi Davison eigensolver.
Compared to the Fourier Sine basis, these basis fields are more irregular and qualitatively
interesting.

5.5.4 Discrete Advection Operator

We repeat a derivation similar to Chapter 5 reformulated in exterior calculus, and explain
how the wedge product implementation of Section 5.5.2 can be used to compute it for pairs
of basis fields.

We restate the Helmholtz vorticity formulation of the Euler equations:

∂ω

∂t
= Luω.

The Lie derivative can be expressed in exterior calculus using Cartan’s formula:

Luω = iudω + diuω.

where iu is the contraction operator defined in exterior calculus as iab = ∗(∗a∧ b). Using
this definition, we can expand the expression to

Luω = ∗(∗dω ∧ u) + d ∗ (∗ω ∧ u).

The first term iudω vanishes since ω is a divergence free field and dω = 0. The second term
can be simplified by distributing the d and ∗ operators over the wedge product and using
the Leibniz rule to obtain
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Luω = u ∧ d ∗ ω.

Adopting the bracket notation and considering u and ω as Laplacian eigenfunctions we have

[Φi, φj] = Φi ∧ d ∗ φj
= Φi ∧ λjΦj

= λj (Φi ∧ Φj) .

since d ∗ φj = curlφj = λjΦj. This is analagous to the λj(Φi × Φj) term in Equation 5.11.
This gives us some confidence as derivations in traditional notation and in exterior calculus
agree.

For every pair of velocity basis fields, we can now evaluate the bracket using the discrete
wedge product operator described previously in Section 5.2. The resulting coefficients form
the Ck matrices and satisfy

λi(Φj × Φi) =
∑
k

Ck[i, j]Φk. (5.14)

Comparison to Analytic Advection Operator The wedge product implementation we
have described is only a first order approximation, since it assumes the fields to be piece-wise
constant over the support volumes. The approximation error incurred requires consideration.
Two basis fields whose wedge product is exactly zero in the analytic case may produce a
small non zero value when calculated numerically. The result is that we do not obtain exact
sparseness in the projected coefficients. Instead, some of the coefficients will be relatively
larger than the average, but all will have a non-zero component.

... ...

Figure 5.13: A figurative comparison of the spectrum of the advection operator. Left:
When performed analytically, the result is exactly sparse. Right: Error in the discrete
approximation of the advection operator produces a spectrum that resembles the analytic
case, but is not perfectly sparse.

This is problematic for our simulation method for two reasons. First, the Ck will no longer
be sparse, increasing the memory and computing expense. Second, and more importantly,
the small but inaccurate non-zero entries cause interaction between basis fields that should
not occur. The effect is a type of diffusion. Energy tends to spread out quickly among all
basis components, smoothing out pronounced variations. Visually, this manifests itself as a
vorticity field that does not change as much as it should.
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A simple mitigation strategy is to apply a threshold to the spectrum in order to keep
the peaks and eliminate the small non zero values. Choosing the threshold is not always
straightforward, as the difference between peaks and the noise floor depends on the resolution
and quality of the mesh. Currently we employ a strategy that sets the threshold to keep n
of the the largest values, rejecting the remaining ones. The parameter n can be chosen by a
user, with typical values between 2 and 5 as this is the sparseness observed in analytic cases.

A better solution to the problem would be to use a higher order approximation of the
wedge product, or develop a discrete wedge product that preserves sparseness.
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Results

In this section we briefly describe our implementation, and then present performance tables
and visual results of our algorithm.

6.1 Implementation Notes

We have implemented our fluid simulation technique in a combination of Python and C++.
Python is a dynamically-typed interpreted scripting language that allows for fast and flexible
development. It allows custom C++ extensions, and bindings exist for numerous compiled
shared libraries. We make use of bindings to OpenGL for drawing primitives, ARPACK for
eigendecomposition, and the Numpy/Scipy numerical libraries for matrix operations.

At its core, our algorithm performs sparse matrix vector multiplication to calculate ∂wk

∂t
=

wTCkw. We store Ck in compressed sparse row format (CSR) format, allowing efficient
computation of matrix vector products, and making the storage footprint very small, as only
1%-4% of the entries are nonzero. Additionally, each of the k components of ∂wk

∂t
can be

calculated independently, making the algorithm inherently parallel. However, in our current
implementation we do not parallelize computation.

6.2 Results

In this section we present performance tables, figures, still images and animations demon-
strating our method and highlighting its unique features. Where appropriate, we choose
to use 2-D fluid simulations, as they often best illustrate the point. We also present some
full color ray traced animations for 3-D simulations, and a creative performance based fluid
animation. Still images from animations are included inline. Video files are available at
http://www.dgp.toronto.edu/people/tyler/msc.
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The simplest case A minimum of three basis functions is needed to observe interesting
dynamic behavior. Figure 6.1 shows a vortex moving clockwise around the domain as it is
carried by the flow of a larger vortex. This confirms what is described mathematically by the
Helmholtz version of the Euler equations: the vorticity is advected by the flow. Observing
the basis coefficients, we can see that energy oscillates between the 2nd and 3rd basis functions
while the 1st basis function remains constant.
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Figure 6.1: Vorticity is advected by the flow. Using only three basis functions, we see the
smaller vortices advected clockwise by the large vortex. The basis field coefficients are shown
at each timestep.
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Effect of number of basis fields An infinite number of basis fields is required to perfectly
describe fluid motion, but we must choose finitely many of them for computation. Basis
fields with larger eigenvalues produce fields with higher ‘frequency’, which in our context
corresponds to fields with smaller and smaller vortices. We choose to truncate the spectrum
keeping all basis fields with eigenvalue smaller than a certain value. Hence a larger number
of basis fields are needed to capture the motion of small vortices. This is a reasonable way
to perform truncation, since at some point vortices of a small enough scale would not be
observable in nature for even very small viscosities.

Figure 6.2 shows snapshots from flows simulated with varying number of basis fields
chosen in this fashion. Note that even for low dimensional bases, the flows produced are still
smooth and the center of the vortices can still be tight; the dimensionality only limits the
minimum scale of a vortex.

Figure 6.2: Left to right, top to bottom: Snapshots from flows simulated with 4, 16, 36, 64,
144 and 529 basis functions respectively. More basis fields permit simulation of smaller scale
vortices.
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Analyticity prevents grid artifacts. Using analytic expressions for basis fields allows
them to be evaluated to numerical precision at any spatial coordinate. Figure 6.3 shows
the absence of observable grid artifacts when analytic basis functions are employed. For
comparison, the example on the left of the figure stores its the velocity field is on a MAC
(Marker and cell) grid and linearly interpolates, as is often used in existing Eulerian fluid
simulations.

A further advantage of analytic basis fields is that they do not need to be stored in
memory. Velocity is computed on the fly as a function of the particle positions. This could
be advantageous in parallel architectures where performance bottlenecks are often related to
memory access. It also makes rendering cost proportional to the number of particles.

Figure 6.3: Top left, bottom left: fluid simulation on 16x16 MAC grid with linear interpola-
tion of velocity field. Grid artifacts are most noticeable at the centers of vortices where the
curvature is high. Top right, bottom right: fluid simulation using analytic basis functions for
velocity field. The velocity field remains smooth and accurate in the areas of high curvature.



Chapter 6. Results 49

Controllable Viscosity In Chapter 5, we showed how to accurately simulate physical
viscosity by decaying the energy in basis fields with a time constant proportional to their
eigenvalue. Accounting for viscosity in our model is trivial and does not require precompu-
tation. It can be controlled at run time by changing a single parameter.

Figure 6.4 shows storyboards of fluid animations for varying viscosity. The top row is
a simulation with zero viscosity. As no energy is dissipated, this animation will continue
perpetually. The second row is for a kinematic viscosity ν equal to that of water. The 3rd
row for a viscosity roughly 30 times greater, comparable to that of corn oil.

...

...

...

Figure 6.4: Viscosity is easily controllable in our model. Each row corresponds to a story-
board with a different viscosity. From top to bottom: ν = 0 (inviscid), ν = 0.001 (water),
ν = 0.030 (vegetable oil). Units for ν are m2

s
× 10−6.
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Analytic 3-D cubic domain Analytic basis functions and their interactions have been
derived for a 3-D cubic domain. This preserves all properties of analyticity previously dis-
cussed in the 2-D case, such as the lack of grid artifacts. Figure 6.5 shows some examples of
individual basis fields. They resemble those of the 2-D rectangle, but are repeated along each
of three axes. Figure 6.6 shows an animation on a 3D domain using analytic basis functions.

Figure 6.5: 3D analytic basis fields.

Figure 6.6: Fluid simulation on a cubic domain using 376 basis functions.
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2-D Simplicial Mesh Using DEC, we extended our algorithm to work with triangular
meshes. The benefits of analyticity are lost, but allows for complex boundary conditions and
immersed obstacles. Figure 6.7 shows examples of flows on 2-D triangular meshes,

Figure 6.7: Fluid simulation on 2D irregular triangular mesh. Left: a complex boundary.
Right: an immersed obstacle.
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3-D Simplicial Mesh Analogously, we also used DEC to extend our algorithm to work
with tetrahedral meshes. Figures 6.8 - 6.10 show examples of individual basis fields calculated
numerically on complex geometries. Figures 6.11, 6.12 shows snapshots from animations.

Figure 6.8: Basis fields for 3D tetrahedral model of a head.

Figure 6.9: Basis fields for 3D tetrahedral model of a horse.

Figure 6.10: Basis fields for 3D tetrahedral model of a bust.

Figure 6.11: Animation within bust model.
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Figure 6.12: Animation within head model.

Smoke simulation Figure 6.13 shows images rendered through volumetric ray tracing of
density fields created by radial basis functions at advected particle positions. Not counting
rendering costs, in both of these examples each simulation step took approximately 10ms,
after a precomputation of less than 10 minutes.

Figure 6.13: Smoke filling a head(top row) and bust(bottom row)
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Snapshots from Artistic Animation Some basis fields exhibit symmetry in one or more
spatial directions. The dynamics amongst these basis fields will produce fluid motion that
remains symmetric. By initializing an inviscid flow with a few of these basis functions, the
resulting dynamics will change perpetually, but always retain an element of symmetry.

We use this property along with a few liberal adjustments to design an artistic fluid
simulation. For example, one modification we employed is to clamp particle positions to
a ‘margin’ around the boundary of the fluid simulation domain. Particles will tend to
accumulate into dense layers, which are continually accumulated and lifted off, creating a
pleasing visualization of the vortices in the field.

Additionally, we allow an adjustable ratio between particle velocity and the rate at which
dynamics progress. This allows fine tuning of the degree to which particles ‘trace out’ the
vortices. A large ratio allows the particles to move quickly through the vortices revealing
their structure, while the actual evolution of the vorticity is relatively slower.

Snapshots from the animation are shown in figure 6.14.

Figure 6.14: Snapshots from a artistic fluid simulation that makes use of symmetric basis
functions to produce a perpetual, symmetric flow.
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6.3 Performance

Domain Precomputation Ck Storage Simulation Step Advect Particles
Analytic O(n2) O(n2) O(z) +O(n2) ≈ O(n2) O(np)

Figure 6.15: Performance and storage complexity for n basis functions, p particles, and z
non-zero structure coefficients in a completely analytic simulation.

For a mesh-free analytic simulation, the table in Figure 6.15 shows theoretical perfor-
mance and storage complexity for n basis functions, p particles and a total of z non-zero
entries in the set of sparse Ck matrices. Simulation time is dominated by the n vector-
matrix-vector products required to compute each component of the tangent vector

∂wk

∂t
= wTCkw.

The simulation time is O(z) + O(n2). The first term O(z) is due to sparse matrix vector
products Ckw, the total of which are proportional to the number of non-zero entries. The
O(n2) term is due to n evaluations of the remaining vector dot products of length n. Note that
the number of non-zero entries z is a function of n. For the analytic domains considered, the
precomputed advection of each pair contributes to a constant number of non-zero coefficients,
making z(n) = O(n2) and the entire simulation time O(n2).
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Figure 6.16: The number of non-zero structure coefficients in the Ck matrices determines
the simulations performance. The number of non-zero entries as a function of the number
of basis functions n is O(n2).

Despite this worst-case polynomial time complexity, practical simulation times are mea-
sured in milliseconds and grow nearly linearly when employing less than 1000 basis functions.
Furthermore, the simulation time is far outweighed by particle advection and rendering costs.
Table 6.17 shows experimental results for an analytic 2-D domain, and Figure 6.18 shows a
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graph of simulation time versus the number of basis functions. Note that for purely analytic
basis fields, particle advection is proportional to the dimension of the basis since for each
particle n basis functions must be evaluated and summed. Precomputation time for analytic
domains is limited to evaluating the non-zero entries of the Ck matrices through symbolic
formulas.

Domain Basis Non-zero Precomputation Ck Storage Simulation Advect
Dim. Ck entries (s) (kb) Step (ms) Particles(ms)

2-D Rect 16 128 0.016 5 3.4 12.2
2-D Rect 64 3040 0.05 24 13 50
2-D Rect 144 17136 0.85 133 35 115
2-D Rect 529 254774 12.5 1990 120 400
2-D Rect 625 358368 16.5 2800 145 476
2-D Rect 1225 1412494 65 11032 311 921
2-D Rect 2500 5994050 310 46818 803 1907

Figure 6.17: Experimental performance and memory usage for 2-D analytic domain. Bottom:
Graph of simulation time as a function of the basis dimensionality. Despite a theoretical
worst-case time complexity of O(n2), for all practical purposes the simulation time scales
nearly linearly when employing less than 1000 basis functions.
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Figure 6.18: Simulation time as a function of basis dimensionality. Despite a theoretical time
complexity of O(n2), for all practical purposes the simulation time scales nearly linearly when
employing less than 1000 basis functions.

When both the number of particles and the basis dimension are large, the cost of analytic
particle advection becomes prohibitive. Alternatively, even when using an analytic domain,
the velocity basis fields may be sampled and stored. This removes some of the benefits of
analyticity; the particle velocities are now interpolated on a grid, but they may be looked
up in constant time, enabling particle advection in O(p) time. Note that in this case, the
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sampled grid is only used for looking up particle velocity. It does not change the run time
performance of the simulation. Table 6.19 shows experimental results for an analytic 3-D
cubic domain with velocity basis fields sampled and stored on a 323 grid.

Domain Basis Precompute Ck Basis fields Simulation Advect
Dim. (s) (kb) (Mb) Step (ms) Particles (ms)

3-D Cube 28 0.4 2.5 32 1.7 0.72
3-D Cube 81 3.6 29 20 4.7 0.68
3-D Cube 176 15.7 160 44 10.7 0.68
3-D Cube 325 54 600 81 21.5 0.67
3-D Cube 833 355 4300 208 71.2 0.67
3-D Cube 1701 1487 19000 425 225 0.67
3-D Cube 2300 2760 35000 575 375 0.67

Figure 6.19: Performance and memory usage for 3-D analytic domain. Particle velocity
is interpolated on a 323 grid, necessitating storage of sampled velocity fields, but making
particle advection O(p) time instead of O(np) time.
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For simulation on a discrete simplicial mesh, Table 6.20 shows theoretical performance
and storage complexity for n basis functions and t mesh elements. Precomputation for
meshed domains has two steps: the search for eigenvectors (eigendecomposition) and bracket
evaluation. In this table we ignore the eigendecomposition cost, as it is difficult to estimate
and likely less of a factor than bracket calculation. Bracket evaluation requires the compu-
tation over a mesh with t elements for every pair of n basis functions, making it O(tn2). For
a number of different meshes and basis dimensions, Table 6.21, 6.23 and Figures 6.22, 6.25
and 6.24 show tables and graphs of experimental precomputation times, memory usage and
run time performance.

Domain Precomputation Simulation Step Ck Storage Basis Field Storage
Simplicial O(tn2) ≈ O(n2) O(n2) O(tn)

Figure 6.20: Performance and storage complexity for n basis functions on a simplicial mesh
with t elements. Precomputation time is assumed to be dominated by bracket evaluation,
as opposed to eigenvalue decomposition.

Domain Tets Basis Dim. Eigendecomp Bracket Eval Total Precompute (s)
(s) (s)

Bust 10k 16 67.6 13.0 80.6
Bust 10k 32 113 43.5 156.5
Bust 10k 64 191 196 387
Bust 10k 128 340 1020 1360
Head 15k 16 64.3 18.8 83.1
Head 15k 32 95.0 61.8 156.8
Head 15k 64 176 260 436
Head 15k 128 319 1370 1689
Horse 20k 16 143 23.3 166.3
Horse 20k 32 252 84.5 336.5
Horse 20k 64 416 373 789
Horse 20k 128 707 1970 2677

Figure 6.21: Precomputation time for tetrahedral meshes.
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Figure 6.22: Precomputation time for tetrehedral meshes. The theoretical time complexity
is O(n2).

Domain Tets Basis Dim. Ck Basis fields Simulation Advect
(kb) (Mb) Step (ms) Particles (ms)

Bust 10k 16 7.5 2.9 2.1 11.5
Bust 10k 32 31 5.83 4.25 11.6
Bust 10k 64 126 11.7 8.5 11.5
Bust 10k 128 508 23.3 17 11.6
Head 15k 16 7.5 3.94 2.6 12
Head 15k 32 31 7.88 5.1 12
Head 15k 64 126 15.7 9.9 12.5
Head 15k 128 508 31.5 19.8 12.5
Horse 20k 16 7.5 5.4 3.1 13.3
Horse 20k 32 31 10.8 6.1 13.3
Horse 20k 64 126 21.6 12 13.6
Horse 20k 128 508 43.2 23 13.9

Figure 6.23: Memory usage and run time performance for tetrahedral meshes.
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Figure 6.24: Simulation time for tetrehedral meshes. Although the theoretical performance
is O(n2), it is nearly O(n) for typical ranges of n.
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Figure 6.25: Memory usage for tetrehedral meshes for n basis functions and t tetrehedra.
The theoretical storage requirements for Ck matrices is O(n2), but is far outweighed by the
O(tn) storage of the basis fields.
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Future Work

In this section, we propose some directions for future research related to artistic control, as
well as improvements and limitations to our core method.

7.1 Artistic Control and Creative Use

As explained in the introduction, our motivation for this work was to design techniques
amenable to user control. This thesis has focused mainly on a method of fluid simulation,
but we believe many of the properties of our technique can be exploited for artistic purposes.

Perturbation of Physical Dynamics We described how geometrically, the dynamics of
a fluid are a one dimensional path through the configuration space of linear superpositions of
divergence free fields. In Chapter 5 we showed how to find a path corresponding to a physical
flow. However, note that any smooth curve through this configuration space, physical or
not, is in some sense ‘fluid-like’ since it always represents a continuously changing divergence
free field that respects all boundary conditions. It would hence be interesting to explore how
users could construct arbitrary continuous curves, or to perturb existing ones.

For example, starting from a physical path that has been precomputed using our method,
a user could perturb or manipulate the path to achieve an artistic effect or fix some small
undesired motion. Note that a fluid’s dynamics depend only on the systems current state
– an incompressible fluid has no memory. Hence, if a user manipulates a portion of a path
but then returns to a point on the original, the subsequent dynamics would continue as
previously calculated.

Spectral Energy Control We have explained that due to orthogonality of the employed
basis and its correspondence with vorticity of varying scales, we have a mechanism for con-
trolling energy independently at different scales. It is conceivable to create an interface
showing a bar graph of the energy in the spectrum, much like the graphic equalizer on a
stereo system. Users could draw envelopes or ‘filters’ describing which parts of the spectrum
should be amplified, attenuated or ignored. These filters could be time varying, achieving
crescendos of turbulence or gradual calming. Essentially, instead of just offering perfect en-
ergy preservation, or decay corresponding to physical viscosity, we have a means for a user
to exert more expressive control or to meet specific measurements.

61
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inin

Figure 7.1: Left: A physical path through the space of Laplacian eigenfunctions. Right: A
portion of the path could be perturbed by a user for artistic effect.

Space-time Control Space-time control for fluids has been attempted previously by Mc-
Namara et al. [21]. These methods are quite slow because the optimization scales sharply
with the size of the grid, making them impractical. A low dimensional basis offers a good
setting to implement control policies that would be intractable in higher dimensions. Using
an Eulerian method, making the grid extremely coarse to speed up optimization is not really
an option – a 16 grid cell simulation will not produce convincing fluid motion. However,
our method will produce natural fluid motion with only a small number basis functions.
Additionally, we have analytic expressions available for time derivatives which are in many
cases very useful for optimization algorithms.

We would like to attempt to use our method to make space time control of fluids practical,
in order to meet user specified constraints such as as avoidance areas (so as to prevent smoke
from drifting in front of a character’s face), keyframes or any general space time objective.

Time Reversibility for Control Time reversible integrators have been described for
both the dynamics of the velocity field and its advected quantities. Time reversibility for
artistic control of rigid bodies has been explored previously by Twigg [34]. An animator may
specify the final state of an animation, and then run a simulation in reverse. The resulting
forward animation will proceed naturally to the intended final state. We would like to explore
similar techniques applied to fluids. In addition to specifying a final state, time reversibility
could be applied directly in a user’s workflow. An animator could have the ability to scrub
backwards and forwards in time while making parameter adjustments to adjust the behavior
of a fluid simulation, without the computer having to store each keyframe in memory.

Texture Synthesis Although not presented in this thesis, we believe it will be straightfor-
ward to extend our method to operate on triangular meshes embedded in three dimensions.
This would allow efficient calculation of fluid flow on the surfaces of models. By advecting
colors, this could be used as a means of texture synthesis to produce patterns not easily
obtained with existing surface noise methods.

Fluid Simulations Exhibiting Spatial Symmetry Some basis fields exhibit symmetry
in one or more spatial directions. The dynamics amongst basis fields with the same symmetry
are closed within their symmetry group. As shown in the results section, this property can
be used to initiate flows with a few carefully selected basis functions so that the resulting flow
changes constantly, but always retains symmetric behaviour. Perturbation in real systems
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make such flows highly unlikely to occur in nature, but they are interesting artistically. They
could also be useful in texture synthesis applications when a symmetric pattern is desired.

7.2 Improvements to Fluid Simulator

Moving Obstacles Our method precomputes basis fields for a static geometry. Moving
obstacles necessarily require the basis functions to be recomputed at each time step which
is an expensive prospect. We require fast numerical methods of precomputing bases for
arbitrary geometries or for particular constrained motions of given obstacles. The work by
Treuille et al. [33] may be useful in this respect.

Tiling Fine scale turbulence is not always needed everywhere in a fluid simulation domain.
Our basis functions have an ordering in the scale of their vortices, but because they have
global support, cannot be used to selectively increase detail in one area. We would like to
explore a mechanism that employs bases at different localized ‘tiles’ in the domain, essentially
allowing multiple independent fluid simulations at different scales to interact. This could be
accomplished both analytically for a restricted set of overlaps, or by numerical projection
for irregular overlapping domains.

Performance Engineering Interactivity is a very useful property, but requires lean per-
formance. There exist many opportunities to optimize the algorithms and implementation of
our technique, including parallel GPU implementations of dynamics advection and further
consideration of fast eigendecomposition methods.

Additional Analytic Bases We have derived analytic dynamics for rectangular 2-D and
3-D domains. Bases and bracket evaluation for additional topologies remain open problems.
Interesting analytic geometries include a 2-D disk (harmonic bases of Bessel functions), a
spherical surface or a spherical cavity. Also, different boundary conditions (for example, a
wrap around boundary condition) remain to be considered.

7.3 Other Applications

Divergence free fields have many potential uses besides simulating water or smoke. For
example, Treuille applied continuous fluid equations to the movement of people in crowds[33].
Divergence free or volume preserving transformations find uses in image analysis and shape
deformation. It would be interesting to consider how properties of our method could be
exploited in these fields.

Biomedical Imaging One particular application worth discussing is that of template
matching in the fields of computer vision and of biomedical imaging. Fluid motion describes
the optimal transport in an incompressible medium, and can be used to quantify volume
preserving deformations. This has been applied to develop useful metrics and procedures
for comparison of biomedical images. Existing methods are computationally expensive. Our
model-reduced multiscale approach could be exploited for new heuristic methods to comput-
ing optimal deformations. Our method uses analytic formulations for rectangular domains
making it very well suited for images.
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Conclusion

We have presented a method of fluid simulation using Laplacian eigenfunctions. Compared
to existing techniques, this method is not merely an incremental improvement but represents
a completely novel approach. We have described many of its unique properties and their
use as a practical means of fluid simulation for computer graphics. The orthogonality of the
basis functions and their correspondence to a spectrum of vorticity enables energy control
at varying turbulent scales. We have used this property to enforce stability of integrators
and simulate physical viscosity. Flexibility in choosing basis dimensionality and the ability
to integrate directly in a space of basis coefficients permits great computational efficiency,
allowing interactive performance. The existence of closed form solutions for simple domains
allows precise evaluation of velocities thereby improving accuracy and visual quality.

We have demonstrated some of the useful properties of our method, but many exciting
avenues remain to be explored. We plan to investigate its use for the the expressive control
of fluid motion, such as spectral energy control and space time optimization. We believe
there is great potential for our method to be exploited in other diverse research areas such
as optimal transport and biomedical imaging. In addition to these, we sincerely hope that
others will seek to extend and apply it in both creative and practical contexts.
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Bracket Evaluation for Analytic
Domains

In this appendix we outline the evaluation of the Lie bracket for additional analytic domains.

A.1 3-D Bounded Rectangular Cavity

In 3-D, vorticity can no longer be described as a scalar az component. Instead, vorticity is a
vector and can be viewed as an oriented axis around which the fluid velocity tends to rotate
at a given point. Hence, the resulting basis functions are more complex. In addition to being
parameterized by a vector wave number k ∈ Z3, three distinct forms must be considered.
These forms are similar, but are rotated to align along the three axes. An additional index
is appended to k to identify them uniquely, taking values between 1 and 3. Our motivation
to choose this basis stems from electromagnetics, where these fields describe the electric
field of the transverse electric (TE) modes of a rectangular cavity in each of three reference
directions [7]. The vorticity basis functions {φk,i} are

φk,1 = 0ax + k3 sin(k1x) cos(k2y) sin(k3z)ay − k2 sin(k1x) sin(k2y) cos(k3z)az

φk,2 = k3 cos(k1x) sin(k2y) sin(k3z)ax + 0ay − k1 sin(k1x) sin(k2y) cos(k3z)az

φk,3 = k2 cos(k1x) sin(k2y) sin(k3z)ax − k1 sin(k1x) cos(k2y) sin(k3z)ay + 0az.

The associated velocity basis fields {Φk} are
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Φk,1 =
1

λk

(
(k22 + k23) cos(k1x) sin(k2y) sin(k3z)ax

− k1k2 sin(k1x) cos(k2y) sin(k3z)ay

−k1k3 sin(k1x) sin(k2y) cos(k3z)az)

Φk,2 =
1

λk
((k2k1 cos(k1x) sin(k2y) sin(k3z)ax

− (k21 + k23) sin(k1x) cos(k2y) sin(k3z)ay

+k2k3 sin(k1x) sin(k2y) cos(k3z)az)

Φk,2 =
1

λk
((−k3k1 cos(k1x) sin(k2y) sin(k3z)ax

− k3k2 sin(k1x) cos(k2y) sin(k3z)ay

+(k21 + k22) sin(k1x) sin(k2y) cos(k3z)az

)

where λk = k21 + k22 + k23. Examples of the velocity basis fields are shown in Fig A.1

Figure A.1: Examples of Φk,i for analytic 3D rectangular domain.

Because these fields contain non-zero components in each component, the resulting ex-
pansion of [Φi, φj] results in an explosion of trigonometric terms and is very tedious to
evaluate. A symbolic math program was used to evaluate this expansion. Invariably, the
result simplifies to a form
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[Φa,i, φb,i] = D cos((a1 ± b1)x) sin((a2 ± b2)y) sin((a3 ± b3)z)ax

+E sin((a1 ± b1)x) cos((a2 ± b2)y) sin((a3 ± b3)z)ay

+F sin((a1 ± b1)x) sin((a2 ± b2)y) cos((a3 ± b3)z)az. (A.1)

where D,E, F are polynomials of a1, a2, a3, b1, b2, b3. This form resembles the expressions for
φk,i, which is desirable since we expect the result to factor into a linear combination of these
vorticity basis functions.

Factoring these expressions is difficult to do symbolically. Instead, it is possible to evalu-
ate their projection onto φk,i by transforming to a linear space and performing the projection
numerically through least squares. The nonlinear trigonometric terms in the factored result
and φk,i resemble each other, so they can be considered as a basis for a linear space.

Additionally, we need only consider a finite range of k1, k2, k3, since from the expressions
in Eq. A.1 we see for example that −(|a1| + |b1|) ≤ k1 ≤ |a1| + |b1|. This can also be
understood from the fact that multiplication of two functions with bandlimits BL1, BL2 will
result in a function that is bandlimited by BL1 +BL2.

The result is that the system is finite dimensional, permitting a solution method through
least squares. The expression does in fact project perfectly with zero remainder on to φk,i,
producing sparse Ck matrices.

In summary, for a given pair (a, b) = ((a1, a2, a3), (b1, b2, b3)) we can evaluate D,E, F
analytically, and then project the result onto the linear space spanned by the trigonometric
terms of Equation A.1 in a finite range of k1, k2, k3. Although we do not obtain a closed
form expression for the projection coefficients in terms of a1, a2, a3, b1, b2, b3, we are still able
to evaluate them exactly through this procedure.
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