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We present an algorithm for the simulation of incompressible fluid phe-
nomena that is computationally efficient and leads to visually convincing
simulations with far fewer degrees of freedom than existing approaches.
Rather than using an Eulerian grid or Lagrangian elements, we represent
vorticity and velocity using a basis of global functions defined over the en-
tire simulation domain. We show that choosing Laplacian eigenfunctions
for this basis provides benefits, including correspondence with spatial scales
of vorticity and precise energy control at each scale. We perform Galerkin
projection of the Navier-Stokes equations to derive a time evolution equa-
tion in the space of basis coefficients. Our method admits closed form solu-
tions on simple domains but can also be implemented efficiently on arbitrary
meshes.
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1. INTRODUCTION

Fluid motion is naturally captivating. Over the years, it has piqued
the imagination and curiosity of artists, mathematicians and scien-
tists. The fascination with fluid motion is exemplified by its long
history in the computer graphics literature. Early work focused on
obtaining motion that is visually interesting and convincing. More
recent physically based techniques rely primarily on numerical ap-
proximation of the Navier-Stokes equations. Computer simulation
of a model necessitates a finite representation of its spatial quan-
tities. In the past, many approaches for choosing a finite represen-
tation have been proposed including the use of Eulerian grids, La-
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Fig. 1. Examples of Laplacian eigenfunction velocity basis fields on var-
ious domains. They are stationary solutions to the Navier-Stokes equations.
For simple domains Laplacian eigenfunctions have closed form expres-
sions; for general meshes they are defined through eigendecomposition of a
discrete operator.

grangian fluid mass particles, vorticity primitives and model reduc-
tion.

Grid-based techniques are the most common approach. However,
they suffer from high computational complexity, due to the general
requirement at each simulation step to solve a system of equations
whose size is proportional to the number of grid elements in the do-
main. Lagrangian techniques, such as mass particles, removes the
dependence on the simulation domain. That said, the computation
of pressure and other fluid quantities are expensive and approxi-
mations lead to noticeable violations of incompressibility. Vortic-
ity primitives, including particles and filaments, are very effective
at simulating smoke in inviscid media but have difficulties mod-
elling diffusion and handling boundary conditions. Model reduc-
tion is a data-driven approach that exploits a precomputed set of
example simulations to obtain a low dimensional representation for
fluid motion. While this technique is very efficient at run-time, it
suffers from significant costs for precomputation and storage, and
is dependent on the performance of an existing simulator or other
mechanism to obtain ground-truth data.

We propose an algorithm for the interactive simulation of fluid
motion that avoids many of the shortcomings of existing tech-
niques. We employ a representation of fluid velocity and vorticity
in a finite dimensional basis of Laplacian eigenfunctions. The re-
sulting velocity basis fields are divergence free and respect bound-
ary conditions, so that these constraints are enforced automati-
cally without the need for additional computation. Our algorithm
can be formulated as Galerkin projection of the vorticity form of
the Navier-Stokes equations onto Laplacian eigenfunctions defined
over the simulation domain. The resulting finite dimensional form
of the equations describes the time evolution of the basis coef-
ficients. We precompute the non-linear advection terms between
pairs of basis functions and store the result as structure coefficients
in a set of matrices. Viscosity and external forces are incorporated
using linear terms, and the basis function coefficients are hence up-
dated using a simple matrix-vector equation.

Laplacian eigenfunctions form an orthogonal basis, allowing one
to easily compute the energy of the fluid. Additionally, Laplacian
eigenfunctions of increasing eigenvalue magnitude have a natural
visual correspondence with decreasing scales of vorticity. Coupled
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Fig. 2. A buoyant smoke simulation using a basis of 128 Laplacian eigen-
functions.

with orthogonality, the correspondence allows precise control of a
fluid’s turbulent spectrum through adjustment of basis coefficients.
With Laplacian eigenfunctions the viscosity can be simulated accu-
rately through a simple exponential decay of basis coefficients, but
also allows arbitrary user-controlled or automatic adjustment of the
spectrum to achieve a desired effect.

For some practically important simulation domains such as a
2-D plane and 3-D rectangular cavity, Laplacian eigenfunctions
have closed form expressions, allowing fully analytic simulation.
In these cases, no mesh is required to store the fluid’s velocity. In-
stead, a velocity can be precisely evaluated at any spatial coordinate
without the need for interpolation. Furthermore, closed form ex-
pressions allow symbolic evaluation of the precomputed advection
operator, making this process fast and exact. However, our method
is not limited to these domains, and we present a formulation on
structured and irregular meshes using discrete exterior calculus,
in which velocity and vorticity basis fields are eigenvectors of a
discrete Laplacian operator. Additionally, our method supports the
interaction of immersed moving obstacles and buoyancy through
projection of forces to the velocity basis fields.

Our method allows considerable flexibility in choosing the ba-
sis dimensionality. Even simulations with few degrees of freedom
provide visually convincing results, avoiding the artifacts com-
mon to very low-dimensional representations in Eulerian or La-
grangian simulations. In this respect, our method provides a princi-
pled means of dimensionality reduction of the Navier-Stokes fluid
equations. However, our method is not data-driven as seen in cur-
rent model reduction techniques and hence avoids the need for an
existing fluid simulator or pre-existing data. We believe our algo-
rithm and choice of basis provides an exciting avenue and will be
an important complement to the methods in the literature.

2. RELATED WORK

Incompressible fluid dynamics is a vast subject. We survey some
relevant work from geometric mechanics, computational fluid dy-
namics (CFD) and the computer graphics literature.

2.1 Geometric Mechanics

Euler’s equations describing the dynamics of a rotating rigid body
date from the 18th century. In 1901, Poincaré [1901] showed that
by considering various group manifolds as the configuration space,
Euler’s equation could apply generally to a class of physical sys-
tems. For example, in the case of a rotating rigid body the group
is the rotation group SO(3). Arnold [1966] showed that an ideal
incompressible fluid is described similarly as geodesic motion on
SDiff, the Lie group of volume preserving diffeomorphisms. The
notion of structure coefficients to describe the interaction of Lie
algebra basis elements of these groups is directly related to the pre-
computed coefficient matrices used in our method. Many of these
concepts are summarized by Marsden and Ratiu [1999].

Representing vorticity using Laplacian eigenfunctions dates
back at least to Yudovich [1963], who used this method to prove
existence and uniqueness theorems for the two dimensional Navier-
Stokes equations. More recently, Agrachev et al. [2005] used vor-
ticity Laplacian eigenfunctions to prove theorems in the mathemat-
ical control literature. This paper was our inspiration for investigat-
ing a Laplacian eigenfunction representation of vorticity as a prac-
tical means of fluid simulation in computer graphics applications.

2.2 Computational Fluid Dynamics

In the 1950’s, Silberman presented a fluid simulation algorithm for
the earth’s atmosphere in a basis of spherical harmonics, which
are Laplacian eigenfunctions on the surface of a sphere [Silberman
1954]. This basis was applied to the vorticity stream function fluid
equations in two dimensions, and the advection operator was eval-
uated symbolically. This method has come to be known in the CFD
literature as the interaction coefficient method. Outside of atmo-
spheric sciences, it is not widely used due to poor scaling for large
basis dimensionality. Such performance considerations were the
motivation for the development of spectral methods as pioneered
by Orszag [Orszag 1969]. Spectral methods are characterized by
the use of a fast transform allowing efficient calculation of advec-
tion in the spatial domain, thereby avoiding convolution sums in the
spectral domain. They are often used to study homogeneous tur-
bulence [Orszag and Patterson 1972; Rogallo et al. 1981]. Fourier
series or Chebyshev polynomials are commonly employed, as spec-
tral methods are limited to bases admitting a fast transform.

Our method is most analogous to the interaction coefficient
method of [Silberman 1954], although we consider arbitrary do-
mains. On arbitrary domains, Laplacian eigenfunctions do not in
general admit a fast transform and hence do not share the inherent
theoretical performance of a spectral method. However, Laplacian
eigenfunctions have many other benefits as we describe in Section
3. Furthermore, theoretical performance scaling is less critical for
the applications we consider and we show that visually detailed
simulations are attainable at low cost.

Divergence free finite element methods (DFFEM) employ bases
of discrete divergence free velocity fields to solve fluid equations
in a space that satisfies mass continuity a priori [Gustafson and
Hartman 1983]. Our method is similar in this respect. However,
in contrast to DFFEM, for some simple domains Laplacian eigen-
functions do not require a discrete mesh. Also, to our knowledge no
basis employed in DFFEM exhibits all of the advantageous proper-
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ties of Laplacian eigenfunctions, including orthogonality, station-
arity with respect to Navier-Stokes equations, global support, and
correspondence with spatial scales of vorticity.

2.3 Computer Graphics

Fluid simulation methods in the computer graphics literature be-
long to roughly four categories: grid-based, mass particles, vortex
elements and model reduction.

Grid-based techniques for simulating the 3-D Navier-Stokes
equations were introduced by Foster and Metaxas [1996] but were
unstable due to the use of explicit integrators. Stam developed an
unconditionally stable integration scheme using semi-Lagrangian
advection and an implicit integrator [Stam 1999]. However, the re-
sult produces artificial viscosity which dampens vortices prema-
turely, and requires an iterative linear solver to solve for a pres-
sure field to enforce incompressibility. Works aimed at mitigat-
ing or minimizing artificial diffusion include vorticity confinement
[Fedkiw et al. 2001] and high order advection schemes [Selle et al.
2008]. To improve the performance of the iterative pressure solver,
use of adaptive grids [Losasso et al. 2004] and hierarchical coarse
grids for projection [Lentine et al. 2010] have been proposed. Stam
[2002] used the 2-D Fourier transform of a velocity field to perform
fast pressure projection, but this method is limited to simple do-
mains and boundary conditions, and still dissipates energy. Bridson
presented a simple means to generate procedural divergence free
flows through the curl of a vector potential stream function [Brid-
son et al. 2007] but this work did not address physical dynamics.
Elcott presented a method that preserves circulation on simplicial
meshes, but does not preserve energy [Elcott et al. 2007]. Mullen
et al. developed a fluid integrator capable of perfect energy preser-
vation or desired viscosity independent of grid-resolution [Mullen
et al. 2009], but this method is complex and requires a solution to
a non-linear system at each timestep. Hybrid particle-grid meth-
ods such as FLIP [Zhu and Bridson 2005] are effective in elim-
inating numerical diffusion, but still require a grid to enforce in-
compressibility. Common to all these stable grid-based techniques
previously mentioned is the need to solve a system of equations
at each time integration step, the size of which is proportional to
the number of grid elements. In contrast, the performance of our
method is independent of the domain or grid resolution. In fact, for
typical domains such as a 2-D rectangle or 3-D rectangular cavity,
the global basis functions we employ have closed form expressions,
removing the need for a velocity grid representation entirely. Our
method allows controllable viscosity, and supports general domains
through a formulation on discrete meshes.

Particle methods track a fluid’s mass through Lagrangian ele-
ments. Smoothed particle hydrodynamics (SPH) was introduced to
graphics by Desbrun and Gascuel [1996] and used subsequently
to simulate water [Müller et al. 2003; Adams et al. 2007]. Enforc-
ing incompressibility in SPH methods is computationally expen-
sive, making them impractical for a large number of particles. Our
method satisfies incompressibility automatically as it operates di-
rectly in a space of divergence free fields.

Vortex methods use Lagrangian elements such as particles or fil-
aments to track vorticity, and advect these elements through the
fluid’s velocity [Gamito et al. 1995; Park and Kim 2005; Ange-
lidis et al. 2006; Weißmann and Pinkall 2010]. A formulation using
vorticity guarantees incompressibility, but the reconstruction of the
velocity field is computationally expensive, typically involving the
Biot-Savart formula. We also use a vorticity formulation, hence re-
quiring no explicit enforcement of the incompressibility constraint.
However, we use a superposition of global basis functions allowing

Symbol Description
N Basis dimension.
{Φk} Set of velocity basis fields.
{φk} Set of vorticity basis fields.
u Fluid velocity vector field.
ω Fluid vorticity vector field.

ω1, ω2, . . . , ωN Basis coefficients.
w = [ω1 ω2 . . . ωN ]T Column vector of basis coefficients.

∆ Vector Laplacian operator.
λk Scalar eigenvalue of kth basis field.

Adv(·, ·) Advection operator.
{Ck} Structure coefficient matrices.
Ck[i, j] (i, j)th entry of the Ck matrix.

ax,ay,az Canonical basis for R3.

Fig. 3. Nomenclature.

the representation of arbitrary vorticity fields, whereas Lagrangian
elements are limited to vorticity concentrated at points or on curves.
Additionally, choosing Laplacian eigenfunctions as a basis allows
the velocity field to be recovered trivially, removing the need for
complicated and expensive reconstruction.

Gupta and Narasimhan represented fluid velocity in a basis of
Legendre polynomials allowing analytic evaluation of differen-
tial operators [Gupta and Narasimhan 2007]. However, only box-
boundary conditions were considered and the velocity basis fields
are not strictly divergence free hence requiring a pressure projec-
tion step to enforce incompressibility.

Model reduction has been applied to fluid simulation by Treuille
et al. [2006]. This technique chooses a reduced velocity basis de-
fined on a mesh through observation of an existing fluid simulator.
The resulting run-time performance is fast, but the precomputation
time and memory requirements are large. Furthermore, it is unclear
how well this technique generalizes to arbitrary flows, as behav-
ior is limited to the examples present in training. Our method can
be used directly as a means of dimensionality reduction through
choice of the basis dimension N , but it differs from current ap-
proaches in many respects. We choose an appropriate velocity basis
a priori instead of relying on observation of an existing fluid sim-
ulator. Up to a desired scale of vorticity, Laplacian eigenfunctions
form a complete basis for divergence free fields. Adding basis func-
tions increases the coverage in a well defined way. In contrast, a
data driven basis can only approximate flows that are in some sense
“close” to those observed in training, and there is no guarantee that
additional training data will substantially increase the span of the
resulting PCA basis. Our basis has a natural correspondence with
spatial scales of vorticity that is lacking in [Treuille et al. 2006].
Finally, Laplacian eigenfunctions have closed form expressions for
some simple domains, in which case the precomputation time and
memory requirements are vastly reduced in comparison.

3. LAPLACIAN EIGENFUNCTIONS AS BASIS
FIELDS

We express the velocity field of a fluid u on a domain D as

u =

N∑
i

ωiΦi.

where Φk are eigenfunctions of the vector Laplacian ∆ =
grad (div )− curl 2. When acting on divergence free fields, the vec-
tor Laplacian reduces to ∆ = −curl 2. We require the set of basis

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



4 •

..
Fig. 4. Laplacian eigenfunctions have a correspondence with spatial
scales of vorticity, allowing basis coefficients to be interpreted as a dis-
crete spectrum of vorticity. The right of the spectrum corresponds to larger
magnitudes of eigenvalues and smaller scale vortices.

fields Φk to be divergence free and satisfy a free slip condition at
the boundary. Hence our basis fields are completely characterized
by

∆Φk = λkΦk

div (Φk) = 0

Φk · n = 0 at ∂D (1)

where λk are eigenvalues and n is a vector normal to the boundary.
The eigenfunctions of the Laplacian operator ∆ are domain de-

pendent. For many simple domains, functions satisfying Eq. 1 have
closed form expressions, which are available for example in the
physics literature where they describe the magnetic fields of elec-
tromagnetic resonators [Cheng 1999]. For instance, on a π × π
square domain, Laplacian eigenfunctions satisfying Eq. 1 have the
closed form expressions

Φk =
1

k2
1 + k2

2

(k2 sin(k1x) cos(k2y)ax

−k1 cos(k1x) sin(k2y)ay) , (2)

where k = (k1, k2) ∈ Z2 is a tuple of integers known as the
vector wave number. The vector fields Φk are Laplacian eigenfunc-
tions with eigenvalues λk = −(k2

1 + k2
2). Examples are plotted in

Figure 4. We will continue to use the square domain as a concrete,
illustrative example throughout the text, although closed form ex-
pressions also exist for many other domains including a 3-D rect-
angular prism [de Witt 2010], a disc, the surface of a sphere, or a
planar region with a wrap around boundary condition.

For our simulation method, we also require the vorticity field
ω = curl (u) and a vorticity basis {φk} with φk = curl Φk. For
example, the vorticity basis fields associated with Eq. 2 are just the
curl of the velocity basis functions and given by

φk = sin(k1x) sin(k2y)az. (3)

One can verify that the φk are also Laplacian eigenfunctions of the
domain. However, as u and ω are orthogonal, the vorticity basis
functions have only a normal component at the boundary, and hence
satisfy

∆φk = λkφk

φk × n = 0 at ∂D. (4)

3.1 Basis Field Properties

We summarize some additional interesting and useful properties of
our basis. One can verify that the example expressions of Eqs. 2
and 3 satisfy all the properties listed below.

Velocity-Vorticity Duality. In general, reconstructing a velocity
field from a vorticity field is computationally expensive, typically
involving the use of the Biot-Savart Law [Angelidis et al. 2006;
Weißmann and Pinkall 2010]. The key benefit of a representation in

Laplacian eigenfunctions is that the inverse operator curl −1 applied
to vorticity basis functions yields a simple expression:

Φk = curl −1φk

= curl −1

(
1

λk
∆φk

)
=

1

λk
curl −1

(
−curl 2φk

)
= − 1

λk
curlφk. (5)

A further important observation is that due to linearity of the curl
operator, the expansion of the vorticity ω in the φi basis shares the
same coefficients as the expansion of the velocity u in the Φk basis

ω = curlu = curl
N∑
i

ωiΦi =

N∑
i

ωicurl Φi =

N∑
i

ωiφi.

This is notable since a single coefficient vector w =
[ω1 ω2 . . . ωN ] uniquely identifies both the fluid’s velocity u
and its vorticity ω. Either field can be easily reconstructed from the
basis coefficients ωi.

Orthogonality. Laplacian eigenfunctions on a domain form an
orthogonal set. The total energy of a signal expressed in an orthog-
onal basis is the sum of the squares of its coefficients by Parseval’s
identity. The fluid’s kinetic energy can thus be calculated as∫

D

‖u‖2 =

N∑
i

ω2
i .

Spatial scales of vorticity. As shown in Figure 4, larger eigen-
values of the Laplacian correspond to fields with smaller vortices.
Basis coefficients can be interpreted as a discrete spatial spectrum
of the fluid with higher “frequencies” corresponding to smaller
scales of vorticity. This notion has been previously applied by Stam
and Fiume using a Fourier basis to generate procedural stochastic
turbulence [Stam and Fiume 1993].

A decomposition into a spectrum of vorticity is important for at
least two reasons. First, because computations require our basis to
be finite, this ordered structure provides a principle by which to se-
lect the finite set. In choosing to truncate the spectrum at some finite
N , the error we incur is well defined: we lose the ability to sim-
ulate vortices smaller than a given scale. Second, combined with
orthogonality, our basis delivers a means of controlling the energy
at different scales of vorticity by adjusting the magnitude of the
basis coefficients. We use this property in Section 4 to accurately
model viscous energy decay. It could also be used to initialize or
arbitrarily change a fluid’s turbulent spectrum.

Closed form expressions. For some simple domains, the ba-
sis fields have closed form expressions. This allows the velocity to
be evaluated at any spatial coordinate without the need for a vox-
elized grid or interpolation. A grid may still be used for visualiza-
tion, for example to track density or subsample the velocity from
the closed form expressions to accelerate particle advection. How-
ever, this grid is independent of the simulation, and its resolution
may be changed without changing the performance or behavior of
the underling simulation. Although the benefits of closed form ex-
pressions are limited to simple geometries, a 2-D rectangle and 3-
D rectangular cavity both represent typical simulation domains. In
Section 8 we compute basis fields numerically for general meshed
domains through a discrete vector Laplacian operator.
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Fig. 5. A fluid’s motion is a curve through the Euclidean space of basis
coefficients, shown for N = 3 as an illustrative example. From the Navier-
Stokes equations, we derive an expression for the tangent vector ẇ as a
function of the current state vector.

4. DYNAMICS

A fluid’s velocity field will change continuously over time accord-
ing to physical laws. In our basis representation, this can be de-
scribed by the continuous change of the coefficient vector w. In
this section we derive an expression for the time derivative ẇ in
terms of the basis coefficients only.

The vorticity formulation of the Navier-Stokes equation is

ω̇ = Adv(u,ω) + ν∆ω + curl (f) (6)

where ω = curlu and f are external forces. For notational conve-
nience, we choose Adv(·, ·) to represent the advection term, which
is defined as Adv(u,ω) := curl (ω × u).

We perform Galerkin projection of the Navier-Stokes equations
onto a Laplacian eigenfunction basis by substituting the expansions
ω =

∑
i ωiφi, u =

∑
j ωjΦj and ω̇ =

∑
k ω̇kφk into Eq. 6 and

rearranging terms through linearity of operators∑
k

ω̇kφk =

N∑
i

N∑
j

ωi ωjAdv(Φi, φj) + ν

N∑
i

∆ωiφi + curl (f).

We discuss each right hand term separately.
Advection. The Adv(Φi, φj) terms represent the nonlinear ad-

vection of basis fields. As will be detailed in Section 6, we precom-
pute these terms and the vorticity basis coefficients of the result
are stored in a set of matrices Ck. After equating coefficients, the
contribution of the self advection term can be written as

ω̇k =

N∑
i

N∑
j

ωi ωjCk[i, j], (7)

summarized in matrix form as

ω̇k = wTCkw,

where Ck are precomputed matrices and w is the column vector of
basis coefficients [ω1 ω2 . . . ωN ]T .

Viscosity. Because φk are Laplacian eigenfunctions, the vis-
cous term becomes ν

∑
i ∆ωkφk = ν

∑
k λkωkφk. The effect of

viscosity on each basis coefficient is hence described by the linear
first order differential equation

ω̇k = νλkωk

which conveniently has the closed form solution ω̇k(t) =
ωk(0)eνλkt. This says that the magnitude of each basis coefficient
decays with a time constant equal to the eigenvalue, which is phys-
ically correct, as small vortices dissipate faster than large vortices.

External forces. External forces can be incorporated by pro-
jecting curl (f) on the vorticity basis, to obtain coefficients fi =

Fig. 6. A basis of Laplacian eigenfunctions is orthogonal, hence surfaces
of constant energy are spheres in coefficient space. Left: Unconstrained ex-
plicit timesteps are subsequently projected to the manifold of constant en-
ergy by normalizing the position vector. Right: Although more expensive, it
is also possible to derive an N -dimensional rotation matrix that constrains
integration exactly to the state manifold.

〈curl (f), φi〉 satisfying curl (f) =
∑N
i fiφi. Due to Eq. 5, fi can

be equivalently obtained by directly projecting f to the velocity ba-
sis basis fi = 〈f ,Φi〉, which often involves less computation. The
contribution to ω̇k is then

ω̇k = fk.

Time Evolution Equation. In total, the time derivative of each
basis coefficient is

ω̇k = wTCkw + νλkωk + fk. (8)

5. TIME INTEGRATION

Any standard numerical integration scheme can be applied to inte-
grate Eq. 8 forward in time. However, for computer graphics appli-
cations speed and energy stability are important requirements. We
first describe our preferred integration scheme that meets these two
requirements, and then discuss other available techniques.

Our basis is orthogonal allowing kinetic energy to be calculated
as a sum of squared coefficients. Additionally, orthogonality im-
plies that surfaces of constant energy in the Euclidean space of co-
efficients are spheres. An inviscid fluid preserves kinetic energy,
and should trace out a path on such a sphere. We choose a fast ex-
plicit integrator (such as forward Euler or Runge-Kutta method) to
first perform an unconstrained timestep, followed by renormaliza-
tion to enforce the energy constraint as depicted in Figure 6. Renor-
malizing to preserve the kinetic energy is a technique available in
any fluid simulation method and is not particular to our approach.
However, when employing grid based velocity fields it is often un-
desirable as it can lead to visual artifacts. We have not observed
such artifacts, possibly because our basis fields are globally sup-
ported and energy is never dissipated locally through a pressure
projection step as for example in [Stam 1999].

The effect of viscosity and projected forces will change the ki-
netic energy, so these terms are integrated following the energy
renormalization. Physical viscosity is achieved by decaying each
coefficient exponentially as described in Section 4. Our integration
scheme is summarized in the pseudo-code of Alg. 1.

Run time complexity. Computation is dominated by the eval-
uation of matrix vector products, making the run time complexity
O(z), where z is the total number of non-zero entries in all the
{Ck} combined. In general, {Ck} are dense and z isO(N3), lead-
ing to a computational complexity similar to that of [Treuille et al.
2006]. However, for some domains where closed form expressions
are available including a 2-D rectangle and 3-D cavity, the regular-
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e1 =
∑N
i w[i]2 // Store kinetic energy of velocity field

for k = 1 to N do
ẇ[k] = wTCkw // Matrix vector product

w += ẇ∆t // Explicit Euler integration
e2 =

∑N
i w[i]2 // Calculate energy after time step

w *=
√
e1/e2 // Renormalize energy

for k = 1 to N do
w[k] *= exp(λk∆t) // Dissipate energy for viscosity
w[k] += f [k] // External forces

Algorithm 1: Pseudo-code for our fluid simulator. Time inte-
gration is explicit and does not require the solution to a linear
system.

ity of the boundary leads to very sparse {Ck} matrices making the
theoretical complexity O(N2) and effectively ≈ O(N) for practi-
cal ranges of N .

Additional Integration Schemes. Eq. 8 is a symbolic expres-
sion for the first time derivative of vorticity. Differentiating this
expression produces closed form expressions for time derivatives
of arbitrary order. These can be useful for alternate integration
schemes to improve accuracy or allow time reversibility. However,
considering that stability has already been enforced it may not be
a concern for graphics applications. Greater accuracy could also be
easily achieved through high order explicit schemes using a small
timestep.

A final integration scheme that is theoretically interesting in-
volves the calculation of an N dimensional rotation matrix R,
which, when applied to the coefficient vector w, constrains its mo-
tion exactly to the constant energy N -sphere. This approximates
the true geodesic motion of the Euler fluid equations near the cur-
rent state. The position vector ω and the tangent vector ω̇ span an
N−1 dimensional rotation plane that uniquely identifies anN×N
skew symmetric matrix ξ. This matrix g is an element of so(N), the
Lie algebra of theN -dimensional rotation group SO(N ). Multiply-
ing by ∆t and exponentiating the matrix yields theN ×N rotation
matrix

R = exp(∆tξ).

This method is more expensive than explicit integration with renor-
malization, and we have found that in comparison it offers very
little gain in accuracy for small timesteps. However, it is of interest
because it preserves the geometric viewpoint of a fluid as a high
dimensional rotation group, and provides a more rigorous way of
enforcing energy preservation compared to the renormalization cor-
rection step.

6. PRECOMPUTATION OF ADVECTION
OPERATOR

The operator Adv(u,ω) := curl (ω × u) represents the advection
of a fluid’s vorticity by its velocity field. It has many equivalent
expressions, including the the Lie derivative Luω, or the Jacobi-
Lie bracket of vector fields −[u,ω],

Adv(Φi, φj) := LΦi
φj = −[Φi, φj ] = curl (φj ×Φi).

In our context, all the preceding expressions are equivalent, and any
can be used to evaluate the advection of pairs of basis fields. For do-
mains admitting closed form expressions for Laplacian eigenfunc-
tions, the evaluation can be performed symbolically and is hence

for i, j = 1 to N do
p = Adv(φi,Φj) // Project the result onto finite basis
for k = 1 to N do

Ck[i, j] = Proj(p, φk)

Algorithm 2: Pseudocode for precomputing entries of Ck ma-
trices.

exact. For discrete domains, it can be approximated numerically on
a mesh as described in Section 8.

For every pair of basis functions we evaluate the advection oper-
ator and express the result in the finite φk basis. The basis coeffi-
cients of this projection are the structure coefficients that form the
{Ck} matrices and satisfy

Adv(Φi, φj) =
∑
k

Ck[i, j]φk.

The Laplacian eigenfunction basis is closed under the Jacobi-Lie
bracket. Hence, we expect the result to factor perfectly into a linear
combination of vorticity basis functions.

For simulation, our basis must necessarily be finite dimensional.
Despite closure, the advection operator may produce coefficients
beyond the chosen finite bandlimit N which cannot be stored. This
is unavoidable, as the nonlinear advection operator necessitates
products of functions. Considering for example the Fourier basis,
the multiplication of twoN bandlimited functions is in general ban-
dlimited by 2N . Physically this represents the cascading of energy
to ever higher scales of turbulence.

Projecting the result of the advection operator to our finite di-
mensional basis amounts to truncating the coefficients beyond the
bandlimit N . However, this truncation is physically motivated,
since in a real fluid the vortices will eventually reach a small enough
scale and dissipate quickly through viscosity. A pseudo-code listing
of the precomputation procedure is shown in Algorithm 2.

Properties of Ck matrices. Because the Jacobi-Lie bracket and
vector cross product are anti-symmetric operators, the structure co-
efficient matrices have the property

1

λi
Ck[i, j] = − 1

λj
Ck[j, i].

The antisymmetry reflects an important property of the our basis
functions. The self advection Adv(Φk, φk) of a vorticity basis field
φk by its velocity Φk is identically zero, and hence u̇ = 0, meaning
that each velocity basis field is a stationary flow. This is analogous
to the stable rotation of a rigid body about a principal axis [Arnold
1966]. To illustrate the preceding discussion, the evaluation of the
structure coefficients in closed form for a 2-D rectangle is provided
in Appendix A as an example.

7. EXTERNAL FORCES

As discussed in Section 4, external forces can be incorporated by
projecting f to the velocity basis basis fi = 〈f ,Φi〉. The inner
product for vector valued f and Φi is defined by the summation of
dot product of vectors at every point x within the domain

〈f ,Φi〉 =
∑
x

f(x) ·Φi(x).

We make use of external forces to allow immersed moving obsta-
cles and to incorporate a simple buoyancy model.
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7.1 Moving Obstacles

The eigenfunctions of the Laplacian operator are defined by their
domain and boundary conditions, making the velocity and vortic-
ity basis fields domain dependent. Static irregular boundaries and
obstacles are supported in our method through precomputation on
general meshes as will be discussed in Section 8. However, moving
obstacles change the shape and boundary conditions of the domain
dynamically, and hence require special consideration.

Our goal is to satisfy the internal boundary conditions of im-
mersed objects at all times. This requirement can be simply stated:
in addition to remaining divergence free, the fluid velocity at an
object’s boundary should be equal to the normal component of the
boundary’s velocity. This satisfies the free-slip condition when the
object is at rest, and equates normal components of the fluid and
boundary velocity when the object is in motion.

Our solution is as follows. At each time-step we project the dif-
ference from the desired normal component onto the velocity basis
Φk and subtract the result from the current state vector w. The re-
sult is a divergence free field that best satisfies the desired boundary
conditions. Note that this method is not perfect, as the projected
forces only approximate the desired forces to the extent that the
basis fields can resolve them. In other words, to handle obstacles
with small spatial features, one must increase N to use basis func-
tions of a sufficiently high spatial frequency. However, for coarse
objects, we have found this method to provide reasonable accuracy,
and it is efficient enough to perform interactively without requiring
precomputation.

Treuille et al. [2006] also correct the normal velocity component
through projection to a divergence free field, and our technique is
similar in this respect. However, in their case an additional set of
fields they name the boundary basis are employed that are chosen
based on the object’s geometry to best correct for normal velocity
components. The boundary basis allows the free-slip constraint to
be more accurately enforced in the vicinity of the boundary, but
adds substantially to memory and precomputation expense. It also
does nothing to improve the quality of object-fluid interaction since
the underlying simulation basis, to which the boundary basis must
be numerically projected, remains unchanged. In contrast, our basis
fields exhibit a spectrum of spatial scales (akin to a Fourier Series)
allowing some guarantee of resolving obstacle features with similar
length scales. Although our method does not perfectly resolve the
boundary, it avoids the use of multiple bases for simulation and
boundaries as well as the associated expensive precomputation and
memory requirements.

Fig. 7. Irregular obstacles interact with the fluid simulation by projecting
contact forces to the velocity basis to best satisfy boundary conditions.

Fig. 8. Velocity basis fields for a tetrahedral mesh obtained through eigen-
decomposition of a discrete Laplacian operator.

7.2 Buoyancy

In some of our examples we incorporate a simple buoyancy model.
Smoke density or particle density are subsampled onto a grid.
Buoyancy forces at each grid centre are calculated through the
Boussinesq approximation. These forces are projected to the ve-
locity basis through pointwise multiplication.

8. FORMULATION ON MESHED DOMAINS

Simple geometries admit basis fields with closed form expressions.
However, our method also supports discrete domains defined on a
mesh. For this, we require a set of basis fields defined on the mesh
that are eigenfunctions of a discrete Laplacian operator, as well as a
means to precompute their advection numerically. Discrete exterior
calculus (DEC) provides a principled means of describing opera-
tors and quantities on simplicial meshes [Desbrun et al. 2005]. It
has been applied to fluid simulation in previous work, and we use
a discrete formulation on tetrahedral meshes analogous to [Mullen
et al. 2009; Elcott et al. 2007]. Regular voxel meshes are also sup-
ported as a special case of this discretization.

Discrete Basis Fields. Through DEC we define the discrete
Laplacian operator ∆ = −curl 2 = −d ∗ d∗ which has a represen-
tation as a sparse, symmetric matrix. We compute the eigendecom-
position of this matrix to produce the discrete velocity and vorticity
basis fields. The velocity basis fields satisfy a free slip boundary
condition and are divergence free, due to constraints imposed im-
plicitly through the Laplacian operator matrix. For example, to en-
force a free-slip velocity boundary condition, we omit (set to zero)
the rows of the discrete Laplacian ∆ that calculate velocity flux on
boundary faces. Defined as above, ∆ admits only divergence free
solutions in its eigendecomposition. Hence the fields produced by
the eigensolver satisfy the conditions of Eq. 1 in a discrete setting.
Examples of basis fields for a tetrahedral mesh are shown in Figure
9.

Discrete Advection Operator. We also employ DEC to approx-
imate the advection operator Adv(·, ·) using appropriate discretiza-
tions. This evaluation is similar to that employed in [Mullen et al.
2009].

Other than the discrete representation and computations de-
scribed above, the rest of our fluid simulation method remains
the same. The operation and performance of the time integration
scheme described in Section 5 does not change, since it operates
only with the basis coefficients. However, additional expenses in
the case of meshed domains include the storage of discrete basis
fields, and the reconstruction of the velocity field through sum-
mation. As we show in Section 9, these costs are reasonable for
typical operating parameters, but can become large for simulations
employing very fine meshes and large basis dimensionality.
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Memory Runtime
Domain Domain Basis Mesh Precomp. Ck Basis Advection Vel. Reconst Vel. Reconst External

Type Dim. Ele. (s) (Mb) Fields † (ms) (cached)† (closed form) Forces †††
(Mb) (ms) (ms) †† (ms)

N T O(N2) O(N2) O(TN) ≈ O(N) O(TN) O(TN) O(TN)

Closed form

3-D Cube 81 3.6 0.05 66 18 26
3-D Cube 172 15 0.3 141 37 56
3-D Cube 325 55 1.1 267 70 105
3-D Cube 540 149 3.3 443 125 172

Closed form

3-D Cube 81 3.6 0.05

n/a

18 30
3-D Cube 172 15 0.3 37 67
3-D Cube 325 55 1.1 70 126
3-D Cube 540 149 3.3 125 216

N T O(TN2) O(N3) O(TN) O(N3) O(TN) O(TN)

Tets Head 64 ≈ 243 436 0.9 26 20 10
Head 128 ≈ 243 1689 7.2 52 42 20

Voxels

Armadillo 16 323 18 0.01 13 3.5 5 22
Armadillo 32 323 47 0.1 26 7 10 43
Armadillo 64 323 185 0.9 52 15 20 88
Armadillo 128 323 1109 7.8 105 39 41 172

Voxels

Bunny 32 323 79 0.11 26 8 10 22
Bunny 64 323 269 0.95 52 17 19 43
Bunny 128 323 1305 7.8 105 40 39 90
Bunny 256 323 6911 62.4 210 130 87 174

Fig. 10. Precomputation time, storage requirements and runtime performance performed on a single CPU core. N is the basis dimensionality and T is the
number of mesh elements.
† Closed form velocity bases cached on a 323 grid.
†† Per 1000 closed form evaluations.
††† Buoyancy forces calculated on a 163 subsampled grid.

9. RESULTS

The storage requirements, precomputation time, and runtime per-
formance of our simulation method for both closed form and
meshed domains are presented in Figure 10. All experiments were
performed on a single CPU core. Time integration was performed
using an explicit fourth order Runge Kutta method. Closed form
domains are limited in their boundaries, but have notable advan-
tages in terms of runtimes, precomputation and memory require-
ments. For examples including external forces (such as buoyancy
or moving obstacles), the cost of projecting the forces on to the ba-
sis is noted. This cost is proportional to the mesh resolution and the
number of basis fields. In the case of the bunny, a subsampled 163

density grid is used for the buoyancy force calculations.
Velocity Reconstruction. For discrete meshes, velocity field

reconstruction requires summation of stored basis fields. This is
proportional to the mesh resolution and the dimension of the ba-
sis. On closed form domains, there are two alternatives for velocity
reconstruction. The basis fields may be pre-evaluated on a mesh
and stored, just as in the discrete case. Alternatively, they may be
computed on demand. Closed form evaluation is proportional to
the number of basis functions and the number of advected quanti-
ties. Each alternative has its strengths. Caching the basis fields uses
memory, but saves computation when many quantities are being
advected through the field (density or millions of particles). If only
a few particles need to be advected (leaves in wind, for example),
then evaluating closed form expressions is accurate and fast and
does not have additional memory requirements. A column in Table
10 lists the cost of 1000 closed form evaluations.

The supplemental videos demonstrate simulations performed on
a variety of domains with varying basis dimensionality. A com-
parison to the stable fluids algorithm is included as a rough qual-
itative validation. We demonstrate flow on some simple tetrahe-
dral meshes; however we chose a structured voxelized grid for the
bunny example only to facilitate implementation. A robust tetrahe-
dral mesh implementation would have similar performance charac-
teristics and alleviate the boundary “stair case” artifacts. The effects
of basis dimensionality are illustrated through the bunny example.
Modes with small eigenvalue capture the low frequency motion of
the fluid. Notably, the bunny’s ears do not begin to be resolved
until after the 64th mode. In addition to using the bottom of the
spectrum to capture the large scale motion, one may choose addi-
tional modes from much higher parts of the spectrum to incorporate
smaller scales. This demonstrates the benefit of a basis that exhibits
a spectrum of scales. Note that these high frequency modes interact
and decay physically, in contrast to other post-processing turbu-
lence models.

10. CURRENT LIMITATIONS

Our method is most applicable to gaseous phenomena and situa-
tions when the domain is entirely filled by fluid. Currently it is not
readily adaptable to typical liquid simulations that require a con-
stantly changing fluid domain with a free surface.

We have shown that interesting dynamics can be captured in a
reasonably sized basis dimension and simulated interactively. How-
ever, various issues prevent it from scaling well to very large basis
dimension or grid resolutions. For irregular domains, the runtime
is in general O(N3). Large mesh resolutions also require large
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Fig. 9. Top-left: An interactive painting application benefits from an ac-
curate viscous fluid simulation that is independent of the density grid. Top-
right: Fluid simulation within a tetrahedral model of a head. Bottom-left:
A turbulent 3-D flow in a cubic domain. Bottom-right: Initializing an invis-
cid simulation with basis functions that are spatially symmetric produces a
perpetual symmetric flow.

precomputation times and storage for the basis fields. For discrete
meshes, the cost of reconstructing the velocity field and projecting
external forces grows linearly with the basis dimension and mesh
resolution.

Many of these issues are not present for domains with closed
form expressions. However, in this case the shape of the boundary
is limited. Also, when advecting many particles or projecting many
forces the velocity basis fields must still be cached as the cost of
closed form evaluations become prohibitive.

11. FUTURE WORK

Artistic Control. We believe our method has potential to be ex-
ploited for the expressive control of fluid phenomena. We have
shown how to continuously change the basis coefficients to sim-
ulate the physical motion of a fluid. However, any smooth curve
through coefficient space, physical or not, may be perceived as
“fluid-like” as it represents a continuously changing volume pre-
serving flow that respects all boundary conditions. In addition to
constructing completely arbitrary flows, perturbing existing physi-
cal paths offers a means to deviate from physics while quantifying
this deviation. Due to orthogonality of the basis and its correspon-
dence with vorticity of varying scales, we have a unique mechanism
for spectral energy control. This could be used to implement time-
varying filters to amplify or attenuate parts of the spectrum, such
as achieving crescendos of turbulence or gradual calming. Again,
we have a means of quantifying the deviation from non-physical
energy behavior, as we have shown how to decay the spectrum ac-
cording to physical viscosity.

Space-time control for fluids has been attempted previously in
[Treuille et al. 2003; McNamara et al. 2004; Fattal and Lischinski

2004]. Many of these methods can be expensive because the opti-
mization scales sharply with the size of the grid, making them im-
practical for interesting domains. A low dimensional basis offers a
good setting to implement control policies that would be intractable
in higher dimensions as demonstrated for example by Barbič et al.
[Barbič et al. 2009]. Our method’s availability of closed form ex-
pressions for time derivatives could also prove useful in optimiza-
tion algorithms.

Our method is fast enough to be interactive, and is very mem-
ory efficient and well formulated on rectangular domains due to
the available closed form expressions. This makes it particularly
attractive for use in image based settings such as painting appli-
cations that simulate fluid phenomena, as we briefly demonstrate
in the video. Additional potential uses in this vein include texture
synthesis and non-photorealistic rendering.

Improvements to our Method. Boundaries of moving obsta-
cles are handled only approximately and could benefit from al-
ternate methods. We have presented a fast and stable integration
scheme; however, additional time integrators could be explored,
particularly symmetric integrators to allow time reversibility as was
achieved in [Mullen et al. 2009]. Time reversibility could prove
useful in fluid control applications, as was demonstrated for rigid
bodies by Twigg and James [2008]. We have evaluated the advec-
tion operator symbolically for closed form expressions on rectan-
gular 2-D and 3-D domains. The same could be done for additional
geometries, such as a 2-D disk or a spherical surface. Also, dif-
ferent boundary conditions (for example, a wrap-around boundary
condition) remain to be considered, which could prove useful for
tilings of fluid simulation domains [Wicke et al. 2009].

Other Applications. Divergence free fields have many poten-
tial uses besides simulating natural phenomena. Fluid motion de-
scribes the optimal transport in an incompressible medium, and can
be used to quantify volume preserving deformations. This has uses
in image analysis and shape deformation. We plan to consider how
the unique properties of our method could be exploited in these
fields. In particular, the elegant formulation on rectangular domains
could make it useful for medical image registration. Additionally,
the availability of closed form expressions and flexibility in choos-
ing the basis dimension make it an accurate and tractable model for
optimization methods. This could be useful for the inverse mod-
elling of real fluid flows for the purpose of parameter estimation,
for example to estimate viscosity from sampled velocity measure-
ments.

12. CONCLUSION

We have presented a fluid simulation method that uses eigenfunc-
tions of the vector Laplacian as bases. We have described many of
its unique properties and its use as a practical means of fluid simula-
tion for computer graphics. The orthogonality of the basis functions
and their correspondence to a spectrum of vorticity scales enables
energy control at varying turbulent scales. We have used this prop-
erty to enforce stability of integrators and simulate physical viscos-
ity. Flexibility in choosing basis dimensionality and the ability to
integrate directly in a space of basis coefficients permits computa-
tional efficiency, enabling interactive performance. The existence
of closed form solutions for simple domains allows symbolic eval-
uation of the advection operator and the ability to sparsely evaluate
velocities on demand.

We have demonstrated some of the useful properties of our
method, but many exciting avenues remain to be explored. We plan
to investigate its use for the the expressive control of fluid motion,
such as spectral energy control and space time optimization. We
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also believe there is potential for our method to be exploited in other
research areas such as medical imaging and inverse flow modelling.

APPENDIX

A. EVALUATING ADVECTION IN CLOSED FORM
FOR 2-D DOMAIN

We evaluate the advection operator for pairs of basis functions de-
fined on a 2-D rectangular domain, defined in Eqs. 3 and 2. We
evaluate Adv(Φi, φj) = curl (φj ×Φi) recalling that i, j are vec-
tor wave numbers i = (i1, i2), j = (j1, j2) and the eigenvalues
λi = −(i21 + i22). This simplifies to

Adv(Φi, φj) =

(
1

λi
i1j2 cos(i1x) cos(j2y) sin(j1x) sin(i2y)

− 1

λi
i2j1 cos(j1x) cos(i2y) sin(i1x) sin(j2y)

)
az.

The trigonometric identity cos(α) sin(β) = 1
2

sin(α + β) −
1
2

sin(α − β) allows factoring to a suitable expression which is
indeed spanned by {φk}:

Adv(Φi, φj) =
1

4λi
((i1j2 − i2j1)φi1+j1,i2+j2

− (i1j2 + i2j1)φi1+j1,i2−j2

+ (i1j2 + i2j1)φi1−j1,i2+j2

−(i1j2 − i2j1)φi1−j1,i2−j2) .

The resulting coefficients are stored in the {Ck} matrices

Ci1+j1,i2+j2 [i, j] = − 1

4(i21 + i22)
(i1j2 − i2j1)

Ci1+j1,i2−j2 [i, j] =
1

4(i21 + i22)
(i1j2 + i2j1)

Ci1−j1,i2+j2 [i, j] = − 1

4(i21 + i22)
(i1j2 + i2j1)

Ci1−j1,i2−j2 [i, j] =
1

4(i21 − i22)
(i1j2 − i2j1).

This result demonstrates closure of the advection operator. The in-
dices i, j are meant figuratively, as they represent tuples of integers.
A suitable re-mapping from (i1, i2) and (j1, j2) to positive integers
is necessary in an implementation. When outside of the storable
finite range, they are discarded as described previously. Note the
sums of indices i1 + j1 and i2 + j2, which reflect the doubling in
bandlimit due to multiplication of sinusoidal functions.

REFERENCES

ADAMS, B., PAULY, M., KEISER, R., AND GUIBAS, L. J. 2007. Adap-
tively sampled particle fluids. In ACM SIGGRAPH 2007 papers. SIG-
GRAPH ’07. ACM, New York, NY, USA.

AGRACHEV, A. A. AND SARYCHEV, A. V. 2005. Navier-Stokes Equa-
tions: Controllability by Means of Low Modes Forcing. Journal of Math-
ematical Fluid Mechanics 7, 1 (March), 108–152.

ANGELIDIS, A., NEYRET, F., SINGH, K., AND NOWROUZEZAHRAI, D.
2006. A controllable, fast and stable basis for vortex based smoke simula-
tion. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation. SCA ’06. Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 25–32.
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